Suárez Miguel, Martínez-Blanco Pablo, Gil-Rojas Sergio, Torres Ana M, Torralba-González Miguel, Mateo Jorge
Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain.
Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain.
Bioengineering (Basel). 2024 Jul 28;11(8):762. doi: 10.3390/bioengineering11080762.
Hepatocellular carcinoma (HCC) presents high mortality rates worldwide, with limited evidence on prognostic factors at diagnosis. This study evaluates the utility of common scores incorporating albumin as predictors of mortality at HCC diagnosis using Machine Learning techniques. They are also compared to other scores and variables commonly used. A retrospective cohort study was conducted with 191 patients from Virgen de la Luz Hospital of Cuenca and University Hospital of Guadalajara. Demographic, analytical, and tumor-specific variables were included. Various Machine Learning algorithms were implemented, with eXtreme Gradient Boosting (XGB) as the reference method. In the predictive model developed, the Barcelona Clinic Liver Cancer score was the best predictor of mortality, closely followed by the Platelet-Albumin-Bilirubin and Albumin-Bilirubin scores. Albumin levels alone also showed high relevance. Other scores, such as C-Reactive Protein/albumin and Child-Pugh performed less effectively. XGB proved to be the most accurate method across the metrics analyzed, outperforming other ML algorithms. In conclusion, the Barcelona Clinic Liver Cancer, Platelet-Albumin-Bilirubin and Albumin-Bilirubin scores are highly reliable for assessing survival at HCC diagnosis. The XGB-developed model proved to be the most reliable for this purpose compared to the other proposed methods.
肝细胞癌(HCC)在全球范围内呈现出高死亡率,而关于诊断时预后因素的证据有限。本研究使用机器学习技术评估了纳入白蛋白的常见评分作为HCC诊断时死亡率预测指标的效用。还将它们与其他常用评分和变量进行了比较。对昆卡的维珍德拉卢斯医院和瓜达拉哈拉大学医院的191例患者进行了一项回顾性队列研究。纳入了人口统计学、分析学和肿瘤特异性变量。实施了各种机器学习算法,并以极端梯度提升(XGB)作为参考方法。在开发的预测模型中,巴塞罗那临床肝癌评分是死亡率的最佳预测指标,其次是血小板-白蛋白-胆红素和白蛋白-胆红素评分。单独的白蛋白水平也显示出高度相关性。其他评分,如C反应蛋白/白蛋白和Child-Pugh评分的效果较差。在分析的各项指标中,XGB被证明是最准确的方法,优于其他机器学习算法。总之,巴塞罗那临床肝癌、血小板-白蛋白-胆红素和白蛋白-胆红素评分在评估HCC诊断时的生存率方面高度可靠。与其他提出的方法相比,XGB开发的模型在这方面被证明是最可靠的。