Suppr超能文献

识别内科脓毒症患者死亡或入住重症监护病房风险的相关预测因素:统计模型与机器学习算法的比较

Identifying Predictors Associated with Risk of Death or Admission to Intensive Care Unit in Internal Medicine Patients with Sepsis: A Comparison of Statistical Models and Machine Learning Algorithms.

作者信息

Mirijello Antonio, Fontana Andrea, Greco Antonio Pio, Tosoni Alberto, D'Agruma Angelo, Labonia Maria, Copetti Massimiliano, Piscitelli Pamela, De Cosmo Salvatore

机构信息

Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.

Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.

出版信息

Antibiotics (Basel). 2023 May 18;12(5):925. doi: 10.3390/antibiotics12050925.

Abstract

Sepsis is a time-dependent disease: the early recognition of patients at risk for poor outcome is mandatory. To identify prognostic predictors of the risk of death or admission to intensive care units in a consecutive sample of septic patients, comparing different statistical models and machine learning algorithms. Retrospective study including 148 patients discharged from an Italian internal medicine unit with a diagnosis of sepsis/septic shock and microbiological identification. Of the total, 37 (25.0%) patients reached the composite outcome. The sequential organ failure assessment (SOFA) score at admission (odds ratio (OR): 1.83; 95% confidence interval (CI): 1.41-2.39; < 0.001), delta SOFA (OR: 1.64; 95% CI: 1.28-2.10; < 0.001), and the alert, verbal, pain, unresponsive (AVPU) status (OR: 5.96; 95% CI: 2.13-16.67; < 0.001) were identified through the multivariable logistic model as independent predictors of the composite outcome. The area under the receiver operating characteristic curve (AUC) was 0.894; 95% CI: 0.840-0.948. In addition, different statistical models and machine learning algorithms identified further predictive variables: delta quick-SOFA, delta-procalcitonin, mortality in emergency department sepsis, mean arterial pressure, and the Glasgow Coma Scale. The cross-validated multivariable logistic model with the least absolute shrinkage and selection operator (LASSO) penalty identified 5 predictors; and recursive partitioning and regression tree (RPART) identified 4 predictors with higher AUC (0.915 and 0.917, respectively); the random forest (RF) approach, including all evaluated variables, obtained the highest AUC (0.978). All models' results were well calibrated. Although structurally different, each model identified similar predictive covariates. The classical multivariable logistic regression model was the most parsimonious and calibrated one, while RPART was the easiest to interpret clinically. Finally, LASSO and RF were the costliest in terms of number of variables identified.

摘要

脓毒症是一种与时间相关的疾病

早期识别预后不良风险的患者至关重要。为了在连续的脓毒症患者样本中确定死亡或入住重症监护病房风险的预后预测因素,比较不同的统计模型和机器学习算法。对148例从意大利内科病房出院、诊断为脓毒症/脓毒性休克且有微生物鉴定结果的患者进行回顾性研究。其中,37例(25.0%)患者达到复合结局。入院时的序贯器官衰竭评估(SOFA)评分(比值比(OR):1.83;95%置信区间(CI):1.41 - 2.39;P < 0.001)、SOFA变化值(OR:1.64;95% CI:1.28 - 2.10;P < 0.001)以及清醒、对声音有反应、对疼痛有反应、无反应(AVPU)状态(OR:5.96;95% CI:2.13 - 16.67;P < 0.001)通过多变量逻辑回归模型被确定为复合结局的独立预测因素。受试者工作特征曲线(AUC)下面积为0.894;95% CI:0.840 - 0.948。此外,不同的统计模型和机器学习算法确定了其他预测变量:快速SOFA变化值、降钙素原变化值、急诊科脓毒症死亡率、平均动脉压和格拉斯哥昏迷量表。采用最小绝对收缩和选择算子(LASSO)惩罚的交叉验证多变量逻辑回归模型确定了5个预测因素;递归划分和回归树(RPART)确定了4个AUC较高的预测因素(分别为0.915和0.917);随机森林(RF)方法纳入所有评估变量后获得了最高的AUC(0.978)。所有模型的结果校准良好。尽管结构不同,但每个模型识别出的预测协变量相似。经典的多变量逻辑回归模型是最简约且校准良好的模型,而RPART在临床上最易于解释。最后,就确定的变量数量而言,LASSO和RF成本最高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e78/10215570/f03dd3f89f43/antibiotics-12-00925-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验