Suppr超能文献

用于脊柱关节磨损模拟器的先进控制系统的验证与确认

Verification and Validation of Advanced Control Systems for a Spinal Joint Wear Simulator.

作者信息

Iyer Kaushikk Ravender, Keeling David, Hall Richard M

机构信息

Key Engineering Solutions Limited, Nexus Discovery Way, Leeds LS2 3AA, UK.

School of Mechanical Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, UK.

出版信息

Bioengineering (Basel). 2024 Aug 1;11(8):779. doi: 10.3390/bioengineering11080779.

Abstract

Wear simulation aims to assess wear rates and their dependence on factors like load, kinematics, temperature, and implant orientation. Despite its significance, there is a notable gap in research concerning advancements in simulator control systems and the testing of clinically relevant waveforms. This study addresses this gap by focusing on enhancing the conventional proportional-integral-derivative (PID) controller used in joint simulators through the development of a fuzzy logic-based controller. Leveraging a single-input multiple-output (SIMO) fuzzy logic control system, this study aimed to improve displacement control, augmenting the traditional proportional-integral (PI) tuning approach. The implementation and evaluation of a novel Fuzzy-PI control algorithm were conducted on the Leeds spine wear simulator. This study also included the testing of dailyliving (DL) profiles, particularly from the hip joint, to broaden the scope of simulation scenarios. While both the conventional PI controller and the Fuzzy-PI controller met ISO tolerance criteria for the spine flexion-extension (FE) profile at 1 Hz, the Fuzzy-PI controller demonstrated superior performance at higher frequencies and with DL profiles due to its real-time adaptive tuning capability. The Fuzzy-PI controller represents a significant advancement in joint wear simulation, offering improved control functionalities and more accurate emulation of real-world physiological dynamics.

摘要

磨损模拟旨在评估磨损率及其对诸如载荷、运动学、温度和植入物方向等因素的依赖性。尽管其具有重要意义,但在模拟器控制系统的进展以及临床相关波形测试方面的研究仍存在显著差距。本研究通过开发基于模糊逻辑的控制器来改进关节模拟器中使用的传统比例积分微分(PID)控制器,从而解决了这一差距。利用单输入多输出(SIMO)模糊逻辑控制系统,本研究旨在改善位移控制,增强传统的比例积分(PI)调节方法。在利兹脊柱磨损模拟器上进行了新型模糊PI控制算法的实施和评估。本研究还包括对日常活动(DL)曲线的测试,特别是来自髋关节的曲线,以拓宽模拟场景的范围。虽然传统的PI控制器和模糊PI控制器在1Hz时均满足脊柱屈伸(FE)曲线的ISO公差标准,但由于其实时自适应调节能力,模糊PI控制器在更高频率和DL曲线下表现出卓越的性能。模糊PI控制器代表了关节磨损模拟方面的重大进展,提供了改进的控制功能以及对现实世界生理动态更精确的模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab1f/11352032/1ef4458d6ba0/bioengineering-11-00779-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验