Suppr超能文献

一种使用深度学习筛查早产儿视网膜病变严重程度的可解释系统。

An Interpretable System for Screening the Severity Level of Retinopathy in Premature Infants Using Deep Learning.

作者信息

Yang Wenhan, Zhou Hao, Zhang Yun, Sun Limei, Huang Li, Li Songshan, Luo Xiaoling, Jin Yili, Sun Wei, Yan Wenjia, Li Jing, Deng Jianxiang, Xie Zhi, He Yao, Ding Xiaoyan

机构信息

State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.

Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.

出版信息

Bioengineering (Basel). 2024 Aug 5;11(8):792. doi: 10.3390/bioengineering11080792.

Abstract

Accurate evaluation of retinopathy of prematurity (ROP) severity is vital for screening and proper treatment. Current deep-learning-based automated AI systems for assessing ROP severity do not follow clinical guidelines and are opaque. The aim of this study is to develop an interpretable AI system by mimicking the clinical screening process to determine ROP severity level. A total of 6100 RetCam Ⅲ wide-field digital retinal images were collected from Guangdong Women and Children Hospital at Panyu (PY) and Zhongshan Ophthalmic Center (ZOC). A total of 3330 images of 520 pediatric patients from PY were annotated to train an object detection model to detect lesion type and location. A total of 2770 images of 81 pediatric patients from ZOC were annotated for stage, zone, and the presence of plus disease. Integrating stage, zone, and the presence of plus disease according to clinical guidelines yields ROP severity such that an interpretable AI system was developed to provide the stage from the lesion type, the zone from the lesion location, and the presence of plus disease from a plus disease classification model. The ROP severity was calculated accordingly and compared with the assessment of a human expert. Our method achieved an area under the curve (AUC) of 0.95 (95% confidence interval [CI] 0.90-0.98) in assessing the severity level of ROP. Compared with clinical doctors, our method achieved the highest F1 score value of 0.76 in assessing the severity level of ROP. In conclusion, we developed an interpretable AI system for assessing the severity level of ROP that shows significant potential for use in clinical practice for ROP severity level screening.

摘要

准确评估早产儿视网膜病变(ROP)的严重程度对于筛查和恰当治疗至关重要。当前基于深度学习的用于评估ROP严重程度的自动化人工智能系统未遵循临床指南且不透明。本研究的目的是通过模仿临床筛查过程来开发一个可解释的人工智能系统,以确定ROP严重程度级别。从广州市妇女儿童医疗中心番禺院区(PY)和中山大学中山眼科中心(ZOC)共收集了6100张RetCamⅢ广角数字视网膜图像。对来自PY的520名儿科患者的3330张图像进行标注,以训练一个目标检测模型来检测病变类型和位置。对来自ZOC的81名儿科患者的2770张图像进行标注,确定分期、区域以及有无附加病变。根据临床指南整合分期、区域和有无附加病变,得出ROP严重程度,从而开发出一个可解释的人工智能系统,该系统可根据病变类型提供分期,根据病变位置提供区域,根据附加病变分类模型提供有无附加病变。据此计算ROP严重程度,并与人类专家的评估结果进行比较。我们的方法在评估ROP严重程度级别时,曲线下面积(AUC)达到了0.95(95%置信区间[CI]为0.90 - 0.98)。与临床医生相比,我们的方法在评估ROP严重程度级别时,F1分数最高达到了0.76。总之,我们开发了一个用于评估ROP严重程度级别的可解释人工智能系统,该系统在临床实践中用于ROP严重程度级别筛查显示出巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验