Suppr超能文献

用于智能早产儿视网膜病变系统的眼底图像数据集。

A fundus image dataset for intelligent retinopathy of prematurity system.

机构信息

Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.

Faculty of Applied Sciences, Macao Polytechnic University, Macao Special Administrative Region of China, Macao, China.

出版信息

Sci Data. 2024 May 27;11(1):543. doi: 10.1038/s41597-024-03362-5.

Abstract

Image-based artificial intelligence (AI) systems stand as the major modality for evaluating ophthalmic conditions. However, most of the currently available AI systems are designed for experimental research using single-central datasets. Most of them fell short of application in real-world clinical settings. In this study, we collected a dataset of 1,099 fundus images in both normal and pathologic eyes from 483 premature infants for intelligent retinopathy of prematurity (ROP) system development and validation. Dataset diversity was visualized with a spatial scatter plot. Image classification was conducted by three annotators. To the best of our knowledge, this is one of the largest fundus datasets on ROP, and we believe it is conducive to the real-world application of AI systems.

摘要

基于图像的人工智能 (AI) 系统是评估眼科疾病的主要模式。然而,目前大多数可用的 AI 系统都是为使用单中心数据集的实验研究而设计的。它们大多无法应用于实际的临床环境中。在这项研究中,我们从 483 名早产儿中收集了 1099 张正常和病理眼底图像,用于智能早产儿视网膜病变 (ROP) 系统的开发和验证。通过空间散点图可视化数据集的多样性。三名注释员对图像进行分类。据我们所知,这是 ROP 领域最大的眼底数据集之一,我们相信这有助于 AI 系统在实际中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a607/11130119/c672f9793737/41597_2024_3362_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验