Suppr超能文献

基于改进的InceptionResNetV2的东北虎个体识别

Amur Tiger Individual Identification Based on the Improved InceptionResNetV2.

作者信息

Wu Ling, Jinma Yongyi, Wang Xinyang, Yang Feng, Xu Fu, Cui Xiaohui, Sun Qiao

机构信息

School of Information and Technology (School of Artificial Intelligence), Beijing Forestry University, Beijing 100083, China.

School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China.

出版信息

Animals (Basel). 2024 Aug 9;14(16):2312. doi: 10.3390/ani14162312.

Abstract

Accurate and intelligent identification of rare and endangered individuals of flagship wildlife species, such as Amur tiger (), is crucial for understanding population structure and distribution, thereby facilitating targeted conservation measures. However, many mathematical modeling methods, including deep learning models, often yield unsatisfactory results. This paper proposes an individual recognition method for Amur tigers based on an improved InceptionResNetV2 model. Initially, the YOLOv5 model is employed to automatically detect and segment facial, left stripe, and right stripe areas from images of 107 individual Amur tigers, achieving a high average classification accuracy of 97.3%. By introducing a dropout layer and a dual-attention mechanism, we enhance the InceptionResNetV2 model to better capture the stripe features of individual tigers at various granularities and reduce overfitting during training. Experimental results demonstrate that our model outperforms other classic models, offering optimal recognition accuracy and ideal loss changes. The average recognition accuracy for different body part features is 95.36%, with left stripes achieving a peak accuracy of 99.37%. These results highlight the model's excellent recognition capabilities. Our research provides a valuable and practical approach to the individual identification of rare and endangered animals, offering significant potential for improving conservation efforts.

摘要

准确且智能地识别旗舰野生动物物种的珍稀濒危个体,如东北虎(),对于了解种群结构和分布至关重要,从而有助于采取针对性的保护措施。然而,许多数学建模方法,包括深度学习模型,往往产生不尽人意的结果。本文提出了一种基于改进的InceptionResNetV2模型的东北虎个体识别方法。首先,使用YOLOv5模型从107只东北虎个体的图像中自动检测并分割出面部、左条纹和右条纹区域,平均分类准确率高达97.3%。通过引入随机失活层和双注意力机制,我们对InceptionResNetV2模型进行了增强,以更好地捕捉个体老虎在不同粒度下的条纹特征,并减少训练过程中的过拟合现象。实验结果表明,我们的模型优于其他经典模型,具有最佳的识别准确率和理想的损失变化。不同身体部位特征的平均识别准确率为95.36%,其中左条纹的准确率最高,达到99.37%。这些结果凸显了该模型出色的识别能力。我们的研究为珍稀濒危动物的个体识别提供了一种有价值且实用的方法,在改进保护工作方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd1/11350864/c64ccf2ceef7/animals-14-02312-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验