YOLOv4在赤狐检测与运动监测中的应用

Application of YOLOv4 for Detection and Motion Monitoring of Red Foxes.

作者信息

Schütz Anne K, Schöler Verena, Krause E Tobias, Fischer Mareike, Müller Thomas, Freuling Conrad M, Conraths Franz J, Stanke Mario, Homeier-Bachmann Timo, Lentz Hartmut H K

机构信息

Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany.

Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Animal Welfare and Animal Husbandry, Dörnbergstr. 25/27, 29223 Celle, Germany.

出版信息

Animals (Basel). 2021 Jun 9;11(6):1723. doi: 10.3390/ani11061723.

Abstract

Animal activity is an indicator for its welfare and manual observation is time and cost intensive. To this end, automatic detection and monitoring of live captive animals is of major importance for assessing animal activity, and, thereby, allowing for early recognition of changes indicative for diseases and animal welfare issues. We demonstrate that machine learning methods can provide a gap-less monitoring of red foxes in an experimental lab-setting, including a classification into activity patterns. Therefore, bounding boxes are used to measure fox movements, and, thus, the activity level of the animals. We use computer vision, being a non-invasive method for the automatic monitoring of foxes. More specifically, we train the existing algorithm 'you only look once' version 4 (YOLOv4) to detect foxes, and the trained classifier is applied to video data of an experiment involving foxes. As we show, computer evaluation outperforms other evaluation methods. Application of automatic detection of foxes can be used for detecting different movement patterns. These, in turn, can be used for animal behavioral analysis and, thus, animal welfare monitoring. Once established for a specific animal species, such systems could be used for animal monitoring in real-time under experimental conditions, or other areas of animal husbandry.

摘要

动物活动是其福利状况的一个指标,而人工观察既耗时又成本高昂。为此,对圈养活体动物进行自动检测和监测对于评估动物活动至关重要,从而能够早期识别出表明疾病和动物福利问题的变化。我们证明,机器学习方法可以在实验室内环境中对赤狐进行无间隙监测,包括将其分类为活动模式。因此,使用边界框来测量狐狸的运动,进而测量动物的活动水平。我们使用计算机视觉,这是一种用于自动监测狐狸的非侵入性方法。更具体地说,我们训练现有的算法“你只看一次”版本4(YOLOv4)来检测狐狸,并将训练好的分类器应用于涉及狐狸的实验视频数据。如我们所示,计算机评估优于其他评估方法。狐狸自动检测的应用可用于检测不同的运动模式。这些运动模式反过来可用于动物行为分析,从而进行动物福利监测。一旦针对特定动物物种建立起来,这样的系统可用于在实验条件下或其他畜牧领域对动物进行实时监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28b7/8228056/4b0bc234ecc7/animals-11-01723-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索