Bonilla Luis L, Carretero Manuel, Mompó Emanuel
Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
Entropy (Basel). 2024 Aug 8;26(8):672. doi: 10.3390/e26080672.
Semiconductor superlattices are periodic nanostructures consisting of epitaxially grown quantum wells and barriers. For thick barriers, the quantum wells are weakly coupled and the main transport mechanism is a sequential resonant tunneling of electrons between wells. We review quantum transport in these materials, and the rate equations for electron densities, currents, and the self-consistent electric potential or field. Depending on superlattice configuration, doping density, temperature, voltage bias, and other parameters, superlattices behave as excitable systems, and can respond to abrupt dc bias changes by large transients involving charge density waves before arriving at a stable stationary state. For other parameters, the superlattices may have self-sustained oscillations of the current through them. These oscillations are due to repeated triggering and recycling of charge density waves, and can be periodic in time, quasiperiodic, and chaotic. Modifying the superlattice configuration, it is possible to attain robust chaos due to wave dynamics. External noise of appropriate strength can generate time-periodic current oscillations when the superlattice is in a stable stationary state without noise, which is called the coherence resonance. In turn, these oscillations can resonate with a periodic signal in the presence of sufficient noise, thereby displaying a stochastic resonance. These properties can be exploited to design and build many devices. Here, we describe detectors of weak signals by using coherence and stochastic resonance and fast generators of true random sequences useful for safe communications and storage.
半导体超晶格是由外延生长的量子阱和势垒组成的周期性纳米结构。对于较厚的势垒,量子阱之间的耦合较弱,主要的输运机制是电子在阱之间的顺序共振隧穿。我们回顾了这些材料中的量子输运,以及电子密度、电流和自洽电势或电场的速率方程。根据超晶格的配置、掺杂密度、温度、电压偏置和其他参数,超晶格表现为可激发系统,并且在达到稳定的稳态之前,可以通过涉及电荷密度波的大瞬变来响应突然的直流偏置变化。对于其他参数,超晶格可能会有通过它们的电流的自持振荡。这些振荡是由于电荷密度波的反复触发和循环,并且可以是时间周期性的、准周期性的和混沌的。通过改变超晶格配置,由于波动动力学有可能实现鲁棒混沌。当超晶格处于无噪声的稳定稳态时,适当强度的外部噪声可以产生时间周期性的电流振荡,这被称为相干共振。反过来,在存在足够噪声的情况下,这些振荡可以与周期性信号发生共振,从而表现出随机共振。这些特性可用于设计和制造许多器件。在这里,我们描述了利用相干共振和随机共振的弱信号探测器,以及对安全通信和存储有用的真随机序列快速发生器。