Suppr超能文献

在医学高光谱成像中分离表面反射率与体反射率

Separating Surface Reflectance from Volume Reflectance in Medical Hyperspectral Imaging.

作者信息

Jong Lynn-Jade S, Post Anouk L, Geldof Freija, Dashtbozorg Behdad, Ruers Theo J M, Sterenborg Henricus J C M

机构信息

Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.

Department of Nanobiophysics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.

出版信息

Diagnostics (Basel). 2024 Aug 20;14(16):1812. doi: 10.3390/diagnostics14161812.

Abstract

Hyperspectral imaging has shown great promise for diagnostic applications, particularly in cancer surgery. However, non-bulk tissue-related spectral variations complicate the data analysis. Common techniques, such as standard normal variate normalization, often lead to a loss of amplitude and scattering information. This study investigates a novel approach to address these spectral variations in hyperspectral images of optical phantoms and excised human breast tissue. Our method separates surface and volume reflectance, hypothesizing that spectral variability arises from significant variations in surface reflectance across pixels. An illumination setup was developed to measure samples with a hyperspectral camera from different axial positions but with identical zenith angles. This configuration, combined with a novel data analysis approach, allows for the estimation and separation of surface reflectance for each direction and volume reflectance across all directions. Validated with optical phantoms, our method achieved an 83% reduction in spectral variability. Its functionality was further demonstrated in excised human breast tissue. Our method effectively addresses variations caused by surface reflectance or glare while conserving surface reflectance information, which may enhance sample analysis and evaluation. It benefits samples with unknown refractive index spectra and can be easily adapted and applied across a wide range of fields where hyperspectral imaging is used.

摘要

高光谱成像在诊断应用方面已显示出巨大潜力,尤其是在癌症手术中。然而,与非大块组织相关的光谱变化使数据分析变得复杂。常用技术,如标准正态变量归一化,往往会导致幅度和散射信息的丢失。本研究探讨了一种新方法来解决光学模型和切除的人体乳腺组织高光谱图像中的这些光谱变化。我们的方法分离表面反射率和体积反射率,假设光谱变化源于像素间表面反射率的显著差异。开发了一种照明设置,用高光谱相机从不同轴向位置但相同天顶角测量样本。这种配置与一种新的数据分析方法相结合,能够估计和分离每个方向的表面反射率以及所有方向的体积反射率。通过光学模型验证,我们的方法使光谱变化降低了83%。其功能在切除的人体乳腺组织中得到了进一步证明。我们的方法有效解决了由表面反射或眩光引起的变化,同时保留了表面反射率信息,这可能会增强样本分析和评估。它有利于具有未知折射率光谱的样本,并且可以很容易地调整并应用于使用高光谱成像的广泛领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bf3/11353750/e6362920a71a/diagnostics-14-01812-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验