Suppr超能文献

比较预处理技术以减少高光谱反射成像中非组织相关的变异。

Comparison of preprocessing techniques to reduce nontissue-related variations in hyperspectral reflectance imaging.

机构信息

the Netherlands Cancer Institute, Surgical Oncology, Amsterdam, The Netherlands, Netherlands.

University of Twente, Science and Technology, Nanobiophysics, Enschede, The Netherlands, Netherlands.

出版信息

J Biomed Opt. 2022 Oct;27(10). doi: 10.1117/1.JBO.27.10.106003.

Abstract

SIGNIFICANCE

Hyperspectral reflectance imaging can be used in medicine to identify tissue types, such as tumor tissue. Tissue classification algorithms are developed based on, e.g., machine learning or principle component analysis. For the development of these algorithms, data are generally preprocessed to remove variability in data not related to the tissue itself since this will improve the performance of the classification algorithm. In hyperspectral imaging, the measured spectra are also influenced by reflections from the surface (glare) and height variations within and between tissue samples.

AIM

To compare the ability of different preprocessing algorithms to decrease variations in spectra induced by glare and height differences while maintaining contrast based on differences in optical properties between tissue types.

APPROACH

We compare eight preprocessing algorithms commonly used in medical hyperspectral imaging: standard normal variate, multiplicative scatter correction, min-max normalization, mean centering, area under the curve normalization, single wavelength normalization, first derivative, and second derivative. We investigate conservation of contrast stemming from differences in: blood volume fraction, presence of different absorbers, scatter amplitude, and scatter slope-while correcting for glare and height variations. We use a similarity metric, the overlap coefficient, to quantify contrast between spectra. We also investigate the algorithms for clinical datasets from the colon and breast.

CONCLUSIONS

Preprocessing reduces the overlap due to glare and distance variations. In general, the algorithms standard normal variate, min-max, area under the curve, and single wavelength normalization are the most suitable to preprocess data used to develop a classification algorithm for tissue classification. The type of contrast between tissue types determines which of these four algorithms is most suitable.

摘要

意义

高光谱反射率成像是医学中用于识别组织类型(如肿瘤组织)的一种方法。组织分类算法是基于机器学习或主成分分析等方法开发的。为了开发这些算法,通常会对数据进行预处理,以去除与组织本身无关的变异性,因为这将提高分类算法的性能。在高光谱成像中,测量的光谱也受到表面反射(眩光)和组织样本内部和之间高度变化的影响。

目的

比较不同预处理算法在减少由眩光和高度差异引起的光谱变化的能力,同时保持基于组织类型之间光学性质差异的对比度。

方法

我们比较了医学高光谱成像中常用的八种预处理算法:标准正态变量、乘法散射校正、最小-最大归一化、均值中心化、曲线下面积归一化、单波长归一化、一阶导数和二阶导数。我们研究了保持由于血容量分数、不同吸收剂的存在、散射幅度和散射斜率的差异而引起的对比度的同时,校正眩光和高度变化的能力。我们使用相似性度量——重叠系数来量化光谱之间的对比度。我们还研究了来自结肠和乳房的临床数据集的算法。

结论

预处理减少了由于眩光和距离变化引起的重叠。一般来说,标准正态变量、最小-最大、曲线下面积和单波长归一化算法最适合预处理用于开发组织分类分类算法的数据。组织类型之间对比度的类型决定了这四个算法中哪一个最适合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb5/9541333/648f391e3862/JBO-027-106003-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验