Jong Lynn-Jade S, de Kruif Naomi, Geldof Freija, Veluponnar Dinusha, Sanders Joyce, Vrancken Peeters Marie-Jeanne T F D, van Duijnhoven Frederieke, Sterenborg Henricus J C M, Dashtbozorg Behdad, Ruers Theo J M
Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
Biomed Opt Express. 2022 Apr 4;13(5):2581-2604. doi: 10.1364/BOE.455208. eCollection 2022 May 1.
Achieving an adequate resection margin during breast-conserving surgery remains challenging due to the lack of intraoperative feedback. Here, we evaluated the use of hyperspectral imaging to discriminate healthy tissue from tumor tissue in lumpectomy specimens. We first used a dataset obtained on tissue slices to develop and evaluate three convolutional neural networks. Second, we fine-tuned the networks with lumpectomy data to predict the tissue percentages of the lumpectomy resection surface. A MCC of 0.92 was achieved on the tissue slices and an RMSE of 9% on the lumpectomy resection surface. This shows the potential of hyperspectral imaging to classify the resection margins of lumpectomy specimens.
由于缺乏术中反馈,在保乳手术中获得足够的手术切缘仍然具有挑战性。在此,我们评估了使用高光谱成像来区分肿块切除标本中的健康组织和肿瘤组织。我们首先使用在组织切片上获得的数据集来开发和评估三个卷积神经网络。其次,我们用肿块切除数据对网络进行微调,以预测肿块切除手术切缘的组织百分比。在组织切片上实现了0.92的马修斯相关系数,在肿块切除手术切缘上实现了9%的均方根误差。这表明高光谱成像在对肿块切除标本的手术切缘进行分类方面具有潜力。