Suppr超能文献

使用基于深度学习的高光谱成像技术鉴别乳腺肿块切除标本中的健康组织和肿瘤组织。

Discriminating healthy from tumor tissue in breast lumpectomy specimens using deep learning-based hyperspectral imaging.

作者信息

Jong Lynn-Jade S, de Kruif Naomi, Geldof Freija, Veluponnar Dinusha, Sanders Joyce, Vrancken Peeters Marie-Jeanne T F D, van Duijnhoven Frederieke, Sterenborg Henricus J C M, Dashtbozorg Behdad, Ruers Theo J M

机构信息

Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.

Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.

出版信息

Biomed Opt Express. 2022 Apr 4;13(5):2581-2604. doi: 10.1364/BOE.455208. eCollection 2022 May 1.

Abstract

Achieving an adequate resection margin during breast-conserving surgery remains challenging due to the lack of intraoperative feedback. Here, we evaluated the use of hyperspectral imaging to discriminate healthy tissue from tumor tissue in lumpectomy specimens. We first used a dataset obtained on tissue slices to develop and evaluate three convolutional neural networks. Second, we fine-tuned the networks with lumpectomy data to predict the tissue percentages of the lumpectomy resection surface. A MCC of 0.92 was achieved on the tissue slices and an RMSE of 9% on the lumpectomy resection surface. This shows the potential of hyperspectral imaging to classify the resection margins of lumpectomy specimens.

摘要

由于缺乏术中反馈,在保乳手术中获得足够的手术切缘仍然具有挑战性。在此,我们评估了使用高光谱成像来区分肿块切除标本中的健康组织和肿瘤组织。我们首先使用在组织切片上获得的数据集来开发和评估三个卷积神经网络。其次,我们用肿块切除数据对网络进行微调,以预测肿块切除手术切缘的组织百分比。在组织切片上实现了0.92的马修斯相关系数,在肿块切除手术切缘上实现了9%的均方根误差。这表明高光谱成像在对肿块切除标本的手术切缘进行分类方面具有潜力。

相似文献

3
Hyperspectral Imaging for Resection Margin Assessment during Cancer Surgery.高光谱成象在癌症手术中的应用,用于评估切除边界。
Clin Cancer Res. 2019 Jun 15;25(12):3572-3580. doi: 10.1158/1078-0432.CCR-18-2089. Epub 2019 Mar 18.

引用本文的文献

本文引用的文献

4
Hyperspectral imaging for diagnosis and detection of ex-vivo breast cancer.用于离体乳腺癌诊断与检测的高光谱成像技术。
Photodiagnosis Photodyn Ther. 2020 Sep;31:101922. doi: 10.1016/j.pdpdt.2020.101922. Epub 2020 Jul 26.
5
A Review of Domain Adaptation without Target Labels.无目标标签的领域自适应综述
IEEE Trans Pattern Anal Mach Intell. 2021 Mar;43(3):766-785. doi: 10.1109/TPAMI.2019.2945942. Epub 2021 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验