Talecka Julia, Kluczyński Janusz, Jasik Katarzyna, Szachogłuchowicz Ireneusz, Torzewski Janusz
Institute of Optoelectronics, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland.
Institute of Robots & Machine Design, Faculty of Mechanical Engineering, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland.
Materials (Basel). 2024 Aug 18;17(16):4095. doi: 10.3390/ma17164095.
Optoelectronic components are crucial across various industries. They benefit greatly from advancements in 3D printing techniques that enable the fabrication of intricate parts. Among these techniques, Material Extrusion (MEX) stands out for its simplicity and cost-effectiveness. Integrating 3D printing into production processes offers the potential to create components with enhanced electrostatic discharge (ESD) resistance, a critical factor for ensuring the reliability and safety of optoelectronic devices. Polyethylene terephthalate glycol-modified (PET-G) is an amorphous copolymer renowned for its high transparency, excellent mechanical properties, and chemical resistance, which make it particularly suitable for 3D printing applications. This study focuses on analyzing the mechanical, structural, and electrostatic properties of pure PET-G as well as PET-G doped with additives to evaluate the effects of doping on its final properties. The findings highlight that pure PET-G exhibits superior mechanical strength compared to doped variants. Conversely, doped PET-G demonstrates enhanced resistance to electrostatic discharge, which is advantageous for applications requiring ESD mitigation. This research underscores the importance of material selection and optimization in 3D printing processes to achieve desired mechanical and electrical properties in optoelectronic components. By leveraging 3D printing technologies like MEX and exploring material modifications, industries can further innovate and enhance the production of optoelectronic devices, fostering their widespread adoption in specialized fields.
光电组件在各个行业中都至关重要。它们从3D打印技术的进步中受益匪浅,这些技术能够制造复杂的部件。在这些技术中,材料挤出(MEX)因其简单性和成本效益而脱颖而出。将3D打印集成到生产过程中,有可能制造出具有增强抗静电放电(ESD)能力的组件,这是确保光电器件可靠性和安全性的关键因素。聚对苯二甲酸乙二醇酯改性(PET-G)是一种无定形共聚物,以其高透明度、优异的机械性能和耐化学性而闻名,这使其特别适合3D打印应用。本研究重点分析纯PET-G以及掺杂添加剂的PET-G的机械、结构和静电性能,以评估掺杂对其最终性能的影响。研究结果表明,与掺杂变体相比,纯PET-G表现出更高的机械强度。相反,掺杂的PET-G表现出增强的抗静电放电能力,这对于需要减轻ESD的应用是有利的。这项研究强调了在3D打印过程中材料选择和优化的重要性,以在光电器件中实现所需的机械和电气性能。通过利用MEX等3D打印技术并探索材料改性,各行业可以进一步创新并提高光电器件的生产,促进其在专业领域的广泛应用。