Luo Lei, Tang Yingchun, Liang Xiao, Su Yanqing, Zhang Youwei, Xie Huasheng
School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Institute Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, D-21502 Geesthacht, Germany.
Materials (Basel). 2024 Aug 19;17(16):4104. doi: 10.3390/ma17164104.
A high Fe content easily produces Fe-rich phases with a harmful morphology, resulting in a huge detrimental effect on the properties and recycling ability of Al-Si alloys. Therefore, finding ways to effectively transform Fe-rich phases to form a beneficial phase or shape is of great significance. Accordingly, Al-Si-based alloys with Fe contents ranging from 0.1 wt.% to 2.0 wt.% were modified by different Mn additions. Moreover, experiments combined with simulations were utilized to comprehensively analyze the mechanism of Mn on the morphology and microstructural evolution of Fe-rich phases from different perspectives. The current findings determine that adding different Fe contents changes the phase-transition reactions in alloys. Without Mn, and by increasing the Fe content from 0.1 wt.% to 2.0 wt.%, the Fe-rich phases gradually convert from a skeleton-shaped -AlFeSi (<0.25 wt.%) to -AlFeSi with a fibrous (0.5 wt.%), needle-like (1.0 wt.%) and plate-like shape without curvatures (2.0 wt.%). The maximum length and mean aspect ratio increase from 12.01 μm to 655.66 μm and from 1.96 to 84.05, while the mean curvature decreases from 8.66 × 10 μm to 8.25 × 10 μm. The addition of 0.35 wt.% Mn promotes a new Chinese-character and petal-shaped -Al(FeMn)Si, with an atomic ratio of Fe and Mn of 1:1 when the Fe content is lower than 0.5 wt.%, while it transforms to -Al(FeMn)Si with an atomic ratio of 5:1, presenting as a refined plate-like shape with a certain curvature, as the Fe content increases to 2.0 wt.%. Mn alters the phase reactions and increases the threshold of the Fe content required for -Al(FeMn)Si, limiting the formation and growth of them simultaneously in time and space. The enrichment of Mn atoms and solute diffusion at the growth front of -Al(FeMn)Si, as well as the strong atomic-binding ability, can deflect the growth direction of -Al(FeMn)Si for it to have a certain curvature. Additionally, the enriched Mn atoms easily form -Al(FeMn)Si and cause the long -Al(FeMn)Si to be broken and refined to further reduce the damages caused to the alloy's performance. Ultimately, the maximum length and mean aspect ratio can be effectively reduced to 46.2% and 42.0%, respectively, while the mean curvature can be noticeably increased by 3.27 times with the addition of Mn.
高铁含量容易产生具有有害形态的富铁相,对铝硅合金的性能和回收能力产生巨大的不利影响。因此,找到有效转变富铁相以形成有益相或形状的方法具有重要意义。相应地,对铁含量在0.1 wt.%至2.0 wt.%范围内的铝硅基合金进行了不同锰添加量的变质处理。此外,结合实验与模拟,从不同角度全面分析了锰对富铁相形态和微观结构演变的作用机制。当前研究结果表明,添加不同的铁含量会改变合金中的相变反应。在不添加锰的情况下,随着铁含量从0.1 wt.%增加到2.0 wt.%,富铁相逐渐从骨架状的-AlFeSi(<0.25 wt.%)转变为纤维状(0.5 wt.%)、针状(1.0 wt.%)和无曲率的板状(2.0 wt.%)的-AlFeSi。最大长度和平均长径比分别从12.01μm增加到655.66μm以及从1.96增加到84.05,而平均曲率从8.66×10μm减小到8.25×10μm。添加0.35 wt.%的锰会促进形成新的汉字状和花瓣状的-Al(FeMn)Si,当铁含量低于0.5 wt.%时,铁与锰的原子比为1:1,而当铁含量增加到2.0 wt.%时,它转变为原子比为5:1的-Al(FeMn)Si,呈现为具有一定曲率的细化板状。锰改变了相反应并提高了-Al(FeMn)Si所需的铁含量阈值,同时在时间和空间上限制了它们的形成和生长。-Al(FeMn)Si生长前沿的锰原子富集和溶质扩散以及强大的原子结合能力,会使-Al(FeMn)Si的生长方向发生偏转,使其具有一定曲率。此外,富集的锰原子容易形成-Al(FeMn)Si并导致长的-Al(FeMn)Si断裂和细化,从而进一步降低对合金性能造成的损害。最终,添加锰后,最大长度和平均长径比可分别有效降低至46.2%和42.0%,而平均曲率可显著增加3.27倍。