Li Ansheng, Wang Hongyan, Hu Shunchang, Zhou Yu, Du Jinguang, Ji Lianqing, Ming Wuyi
Mechanical and Electrical Transportation Science and Education Center, Huanghe Science and Technology University, Zhengzhou 450006, China.
Mechanical and Electrical Engineering Institute, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
Micromachines (Basel). 2024 Aug 17;15(8):1041. doi: 10.3390/mi15081041.
Precision processing of monocrystalline silicon presents significant challenges due to its unique crystal structure and chemical properties. Effective modeling and simulation are essential for advancing the understanding of the manufacturing process, optimizing design, and refining production parameters to enhance product quality and performance. This review provides a comprehensive analysis of the modeling and simulation techniques applied in the precision machining of monocrystalline silicon using diamond wire sawing. Firstly, the principles of mathematical analytical model, molecular dynamics, and finite element methods as they relate to monocrystalline silicon processing are outlined. Subsequently, the review explores how mathematical analytical models address force-related issues in this context. Molecular dynamics simulations provide valuable insights into atomic-scale processes, including subsurface damage and stress distribution. The finite element method is utilized to investigate temperature variations and abrasive wear during wire cutting. Furthermore, similarities, differences, and complementarities among these three modeling approaches are examined. Finally, future directions for applying these models to precision machining of monocrystalline silicon are discussed.
由于单晶硅独特的晶体结构和化学性质,其精密加工面临重大挑战。有效的建模与仿真对于增进对制造过程的理解、优化设计以及完善生产参数以提高产品质量和性能至关重要。本综述全面分析了应用于金刚石线锯切割单晶硅精密加工的建模与仿真技术。首先,概述了与单晶硅加工相关的数学分析模型、分子动力学和有限元方法的原理。随后,本综述探讨了数学分析模型如何解决这方面与力相关的问题。分子动力学模拟为原子尺度的过程提供了有价值的见解,包括亚表面损伤和应力分布。有限元方法用于研究线切割过程中的温度变化和磨料磨损。此外,还考察了这三种建模方法之间的异同和互补性。最后,讨论了将这些模型应用于单晶硅精密加工的未来方向。