Suppr超能文献

基于TTM-MDS和高斯过程回归的微电火花加工混合智能过程模型的开发

Development of a Hybrid Intelligent Process Model for Micro-Electro Discharge Machining Using the TTM-MDS and Gaussian Process Regression.

作者信息

Chen Yanyan, Guo Xudong, Zhang Guojun, Cao Yang, Shen Dili, Li Xiaoke, Zhang Shengfei, Ming Wuyi

机构信息

College of Mechanical Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China.

Mechanical and Electrical Engineering Institute, Zhengzhou University of Light Industry, Zhengzhou 450002, China.

出版信息

Micromachines (Basel). 2022 May 28;13(6):845. doi: 10.3390/mi13060845.

Abstract

This paper proposed a hybrid intelligent process model, based on a hybrid model combining the two-temperature model (TTM) and molecular dynamics simulation (MDS) (TTM-MDS). Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films [Physical Review B, 68, (064114):1-22.], and Gaussian process regression (GPR), for micro-electrical discharge machining (micro-EDM) were also used. A model of single-spark micro-EDM process has been constructed based on TTM-MDS model to predict the removed depth (RD) and material removal rate (MRR). Then, a GPR model was proposed to establish the relationship between input process parameters (energy area density and pulse-on duration) and the process responses (RD and MRR) for micro-EDM machining. The GPR model was trained, tested, and tuned using the data generated from the numerical simulations. Through the GPR model, it was found that micro-EDM process responses can be accurately predicted for the chosen process conditions. Therefore, the hybrid intelligent model proposed in this paper can be used for a micro-EDM process to predict the performance.

摘要

本文提出了一种混合智能过程模型,该模型基于结合双温模型(TTM)和分子动力学模拟(MDS)的混合模型(TTM-MDS)。还采用了短脉冲激光熔化和金属薄膜分解的原子-连续介质联合建模[《物理评论B》,68,(064114):1-22。]以及高斯过程回归(GPR),用于微电火花加工(micro-EDM)。基于TTM-MDS模型构建了单火花微电火花加工过程模型,以预测去除深度(RD)和材料去除率(MRR)。然后,提出了一个GPR模型,以建立微电火花加工中输入工艺参数(能量面积密度和脉冲持续时间)与工艺响应(RD和MRR)之间的关系。使用数值模拟生成的数据对GPR模型进行训练、测试和调整。通过GPR模型发现,在所选择的工艺条件下,可以准确预测微电火花加工过程的响应。因此,本文提出的混合智能模型可用于微电火花加工过程,以预测其性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd22/9227863/fa5f541b45e8/micromachines-13-00845-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验