文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于可持续未来的聚乳酸/聚(3-羟基丁酸酯-4-羟基丁酸酯)商业共混物的(生物)可降解生物炭复合材料——降解与静电性能研究

(Bio)degradable Biochar Composites of PLA/P(3HB--4HB) Commercial Blend for Sustainable Future-Study on Degradation and Electrostatic Properties.

作者信息

Musioł Marta, Rydz Joanna, Janeczek Henryk, Andrzejewski Jacek, Cristea Mariana, Musioł Krzysztof, Kampik Marian, Kowalczuk Marek

机构信息

Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland.

International Polish-Romanian Research Laboratory ADVAPOL, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland.

出版信息

Polymers (Basel). 2024 Aug 17;16(16):2331. doi: 10.3390/polym16162331.


DOI:10.3390/polym16162331
PMID:39204551
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11359726/
Abstract

Interesting alternatives to expensive biodegradable polymers are their composites with natural fillers. The addition of biochar to a blend of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate--4-hydroxybutyrate) was studied, and the resulting materials were evaluated for their properties and changes during degradation. Introducing biochar as a filler brought a noticeable improvement in electrostatic properties. Surface resistivity decreased from 3.80 × 10 for the sample without biochar to 1.32 × 10 for the sample with 30% filler content. Degradation tests revealed distinct differences in the degradation profile for composites due to the presence of filler. Composites with a lower biochar content displayed curling crack edges during hydrolytic degradation, and when the filler content reached 20 wt%, PLA loss accelerated. This study suggests that biochar-based composites have potential to be used as sustainable materials with improved properties.

摘要

昂贵的可生物降解聚合物的有趣替代品是它们与天然填料的复合材料。研究了将生物炭添加到聚乳酸(PLA)和聚(3-羟基丁酸酯-4-羟基丁酸酯)的共混物中,并对所得材料的性能及其在降解过程中的变化进行了评估。引入生物炭作为填料使静电性能有了显著改善。表面电阻率从不含生物炭的样品的3.80×10降低到填料含量为30%的样品的1.32×10。降解测试表明,由于填料的存在,复合材料的降解曲线存在明显差异。生物炭含量较低的复合材料在水解降解过程中显示出卷曲的裂纹边缘,当填料含量达到20 wt%时,PLA的损失加速。这项研究表明,基于生物炭的复合材料有潜力用作性能得到改善的可持续材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/2e2e8c2f0f91/polymers-16-02331-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/7f7dd03e01a2/polymers-16-02331-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/a912b3ee9e31/polymers-16-02331-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/f062fef6d262/polymers-16-02331-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/cc3460e68930/polymers-16-02331-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/29ed7484355f/polymers-16-02331-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/1c0f1667a829/polymers-16-02331-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/8616d84d3046/polymers-16-02331-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/2e2e8c2f0f91/polymers-16-02331-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/7f7dd03e01a2/polymers-16-02331-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/a912b3ee9e31/polymers-16-02331-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/f062fef6d262/polymers-16-02331-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/cc3460e68930/polymers-16-02331-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/29ed7484355f/polymers-16-02331-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/1c0f1667a829/polymers-16-02331-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/8616d84d3046/polymers-16-02331-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25f/11359726/2e2e8c2f0f91/polymers-16-02331-g008.jpg

相似文献

[1]
(Bio)degradable Biochar Composites of PLA/P(3HB--4HB) Commercial Blend for Sustainable Future-Study on Degradation and Electrostatic Properties.

Polymers (Basel). 2024-8-17

[2]
Mechanical and Rheological Evaluation of Polyester-Based Composites Containing Biochar.

Polymers (Basel). 2024-4-28

[3]
(Bio)degradable Polymeric Materials for Sustainable Future-Part 2: Degradation Studies of P(3HB--4HB)/Cork Composites in Different Environments.

Polymers (Basel). 2019-3-22

[4]
Growth of keratinocytes on porous films of poly(3-hydroxybutyrate) and poly(4-hydroxybutyrate) blended with hyaluronic acid and chitosan.

J Biomed Mater Res A. 2008-6-15

[5]
Zein/Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: Preparation, characterization and cytocompatibility.

Mater Sci Eng C Mater Biol Appl. 2017-2-1

[6]
Uniaxial stretching and properties of fully biodegradable poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends.

Int J Biol Macromol. 2019-2-4

[7]
In vitro biocompatibility and degradation of terpolyester 3HB-co-4HB-co-3HHx, consisting of 3-hydroxybutyrate, 4-hydroxybutyrate and 3-hydroxyhexanoate.

J Biomater Sci Polym Ed. 2008

[8]
Supercritical CO Foaming of Poly(3-hydroxybutyrate--4-hydroxybutyrate).

Polymers (Basel). 2022-5-15

[9]
Effect of Filler Content on the Morphology and Physical Properties of Poly(Lactic Acid)-Hydroxyapatite Composites.

Materials (Basel). 2023-1-13

[10]
(Bio)Degradable Polymeric Materials for Sustainable Future-Part 3: Degradation Studies of the PHA/Wood Flour-Based Composites and Preliminary Tests of Antimicrobial Activity.

Materials (Basel). 2020-5-11

引用本文的文献

[1]
Biochar Utilization in Antimicrobial, Anticancer, and Biosensing Applications: A Review.

Biomolecules. 2025-5-25

[2]
Poly(3-hydroxybutyrate)/Clay/Essential Oils Bionanocomposites Incorporating Biochar: Thermo-Mechanical and Antioxidant Properties.

Polymers (Basel). 2025-4-24

[3]
Does the Incorporation of Biochar into Biodegradable Mulch Films Provide Agricultural Soil Benefits?

Polymers (Basel). 2024-12-6

本文引用的文献

[1]
Mechanical and Rheological Evaluation of Polyester-Based Composites Containing Biochar.

Polymers (Basel). 2024-4-28

[2]
Biodegradable Polylactic Acid and Its Composites: Characteristics, Processing, and Sustainable Applications in Sports.

Polymers (Basel). 2023-7-19

[3]
The Effect of Biochar Addition on Thermal Stability and Decomposition Mechanism of Poly(butylene succinate) Bionanocomposites.

Molecules. 2023-7-11

[4]
Synthesis and Study of Fully Biodegradable Composites Based on Poly(butylene succinate) and Biochar.

Polymers (Basel). 2023-2-20

[5]
PHA-Based Bioplastic: a Potential Alternative to Address Microplastic Pollution.

Water Air Soil Pollut. 2023

[6]
The Modification of Poly(3-hydroxybutyrate--4-hydroxybutyrate) by Melt Blending.

Polymers (Basel). 2022-4-23

[7]
Green Copolymers Based on Poly(Lactic Acid)-Short Review.

Materials (Basel). 2021-9-13

[8]
A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks.

Bioresour Technol. 2021-12

[9]
Properties and structure of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) filaments for fused deposition modelling.

Int J Biol Macromol. 2021-7-31

[10]
Chain dynamics and crystalline network structure of poly[-3-hydroxybutyrate--4-hydroxybutyrate] as revealed by solid-state NMR.

Soft Matter. 2021-4-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索