文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Design and Optimization of Molecularly Imprinted Polymer Targeting Epinephrine Molecule: A Theoretical Approach.

作者信息

Adeleke Victoria T, Ebenezer Oluwakemi, Lasich Madison, Tuszynski Jack, Robertson Scott, Mugo Samuel M

机构信息

Thermodynamics-Materials-Separations Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Umlazi 4031, South Africa.

Department of Physics, University of Alberta, Edmonton, AB T6G 2R3, Canada.

出版信息

Polymers (Basel). 2024 Aug 19;16(16):2341. doi: 10.3390/polym16162341.


DOI:10.3390/polym16162341
PMID:39204561
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11359759/
Abstract

Molecularly imprinted polymers (MIPs) are a growing highlight in polymer chemistry. They are chemically and thermally stable, may be used in a variety of environments, and fulfill a wide range of applications. Computer-aided studies of MIPs often involve the use of computational techniques to design, analyze, and optimize the production of MIPs. Limited information is available on the computational study of interactions between the epinephrine (EPI) MIP and its target molecule. A rational design for EPI-MIP preparation was performed in this study. First, density functional theory (DFT) and molecular dynamic (MD) simulation were used for the screening of functional monomers suitable for the design of MIPs of EPI in the presence of a crosslinker and a solvent environment. Among the tested functional monomers, acrylic acid (AA) was the most appropriate monomer for EPI-MIP formulation. The trends observed for five out of six DFT functionals assessed confirmed AA as the suitable monomer. The theoretical optimal molar ratio was 1:4 EPI:AA in the presence of ethylene glycol dimethacrylate (EGDMA) and acetonitrile. The effect of temperature was analyzed at this ratio of EPI:AA on mean square displacement, X-ray diffraction, density distribution, specific volume, radius of gyration, and equilibrium energies. The stability observed for all these parameters is much better, ranging from 338 to 353 K. This temperature may determine the processing and operating temperature range of EPI-MIP development using AA as a functional monomer. For cost-effectiveness and to reduce time used to prepare MIPs in the laboratory, these results could serve as a useful template for designing and developing EPI-MIPs.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/8419cabcc8f2/polymers-16-02341-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/be3bf23ba8b1/polymers-16-02341-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/8fd8524cafe7/polymers-16-02341-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/0f6006d6ff0c/polymers-16-02341-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/47897e0312fe/polymers-16-02341-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/211c008bc591/polymers-16-02341-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/aa6be4ba5a3c/polymers-16-02341-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/4fa6780c0ea7/polymers-16-02341-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/f67482f77638/polymers-16-02341-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/7db9fd310b7e/polymers-16-02341-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/8419cabcc8f2/polymers-16-02341-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/be3bf23ba8b1/polymers-16-02341-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/8fd8524cafe7/polymers-16-02341-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/0f6006d6ff0c/polymers-16-02341-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/47897e0312fe/polymers-16-02341-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/211c008bc591/polymers-16-02341-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/aa6be4ba5a3c/polymers-16-02341-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/4fa6780c0ea7/polymers-16-02341-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/f67482f77638/polymers-16-02341-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/7db9fd310b7e/polymers-16-02341-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab95/11359759/8419cabcc8f2/polymers-16-02341-g009.jpg

相似文献

[1]
Design and Optimization of Molecularly Imprinted Polymer Targeting Epinephrine Molecule: A Theoretical Approach.

Polymers (Basel). 2024-8-19

[2]
Rational Design of Molecularly Imprinted Polymers for Curcuminoids Binding: Computational and Experimental Approaches for the Selection of Functional Monomers.

J Chem Inf Model. 2024-7-8

[3]
Effect of Formulation on the Binding Efficiency and Selectivity of Precipitation Molecularly Imprinted Polymers.

Molecules. 2018-11-16

[4]
[Preparation of molecularly imprinted polymers-functionalized silica nanoparticles for the separation and recognition of aristolochic acids].

Se Pu. 2021-10

[5]
[Research progress of molecularly imprinted polymers in separation of chiral drugs by capillary electrochromatography].

Se Pu. 2020-9-8

[6]
Optimization of enrofloxacin-imprinted polymers by computer-aided design.

J Mol Model. 2015-11

[7]
Computer-Aided Design of Molecularly Imprinted Polymers for Simultaneous Detection of Clenbuterol and Its Metabolites.

Polymers (Basel). 2018-12-23

[8]
Theoretical design and preparation research of molecularly imprinted polymers for steviol glycosides.

J Mol Model. 2021-8-7

[9]
[Preparation of molecularly imprinted polymers based on covalent organic frameworks and their application to selective recognition of trace norfloxacin in milk].

Se Pu. 2022-1

[10]
Quantum mechanical studies on dioxin-imprinted polymer precursor composites: Fundamental insights to enhance the binding strength and selectivity of biomarkers.

J Mol Recognit. 2018-7-1

本文引用的文献

[1]
Temperature effects and molecular insights towards the optimization of polyvinyl alcohol as adsorbent of organic pollutants from aqueous solution.

J Mol Graph Model. 2024-7

[2]
Miscibility and thermal behavior of poly(methyl methacrylate) and polystyrene blend using benzene as a common solvent.

Turk J Chem. 2022-9-16

[3]
DFT calculations in solution systems: solvation energy, dispersion energy and entropy.

Phys Chem Chem Phys. 2023-1-4

[4]
Molecularly Imprinted Polymers as State-of-the-Art Drug Carriers in Hydrogel Transdermal Drug Delivery Applications.

Polymers (Basel). 2022-2-8

[5]
Unveiling of Pyrimidindinones as Potential Anti-Norovirus Agents-A Pharmacoinformatic-Based Approach.

Molecules. 2022-1-7

[6]
Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review.

Molecules. 2021-10-15

[7]
Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials.

Molecules. 2021-9-16

[8]
Imprinted Polymers as Synthetic Receptors in Sensors for Food Safety.

Biosensors (Basel). 2021-2-11

[9]
Preparation of Cross-Linked Monodisperse Poly(acrylic acid) Particles by Precipitation Polymerization.

Langmuir. 2020-10-13

[10]
Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy.

Angew Chem Int Ed Engl. 2021-2-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索