Suppr超能文献

一种基于编码信息的HEIF图像轻量级双重压缩检测器

A Lightweight Double Compression Detector for HEIF Images Based on Encoding Information.

作者信息

Furushita Yoshihisa, Fontani Marco, Bianchi Stefano, Piva Alessandro, Ramponi Giovanni

机构信息

Department of Information Engineering, University of Florence, 50139 Florence, Italy.

Amped Software, 34149 Trieste, Italy.

出版信息

Sensors (Basel). 2024 Aug 6;24(16):5103. doi: 10.3390/s24165103.

Abstract

Extensive research has been conducted in image forensics on the analysis of double-compressed images, particularly in the widely adopted JPEG format. However, there is a lack of methods to detect double compression in the HEIF format, which has recently gained popularity since it allows for reduced file size while maintaining image quality. Traditional JPEG-based techniques do not apply to HEIF due to its distinct encoding algorithms. We previously proposed a method to detect double compression in HEIF images based on Farid's work on coding ghosts in JPEG images. However, this method was limited to scenarios where the quality parameter used for the first encoding was larger than for the second encoding. In this study, we propose a lightweight image classifier to extend the existing model, enabling the identification of double-compressed images without heavily depending on the input image's quantization history. This extended model outperforms the previous approach and, despite its lightness, demonstrates excellent detection accuracy.

摘要

图像取证领域针对双压缩图像的分析开展了广泛研究,特别是针对广泛采用的JPEG格式。然而,目前缺乏检测HEIF格式中双压缩的方法,该格式由于在保持图像质量的同时允许减小文件大小,最近受到了广泛欢迎。基于传统JPEG的技术由于其独特的编码算法,不适用于HEIF。我们之前基于Farid关于JPEG图像中编码重影的研究提出了一种检测HEIF图像中双压缩的方法。然而,该方法仅限于第一次编码所使用的质量参数大于第二次编码的情况。在本研究中,我们提出了一种轻量级图像分类器来扩展现有模型,能够在不严重依赖输入图像量化历史的情况下识别双压缩图像。这个扩展模型优于之前的方法,并且尽管其轻量级特性,仍展现出出色的检测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ad0/11360040/b3e0f5628c67/sensors-24-05103-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验