Liu Huiwen, Lu Ying-Bo, Zhang Li, Liu Fangchao, Tian You, Du Hailong, Yao Junsheng, Yu Zi, Li Duyi, Lin Xuemai
School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai 264209, China.
National Space Science Data Center, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China.
Sensors (Basel). 2024 Aug 11;24(16):5206. doi: 10.3390/s24165206.
Impact craters are crucial for our understanding of planetary resources, geological ages, and the history of evolution. We designed a novel pseudo-spectral spatial feature extraction and enhanced fusion (PSEF) method with the YOLO network to address the problems encountered during the detection of the numerous and densely distributed meter-sized impact craters on the lunar surface. The illumination incidence edge features, isotropic edge features, and eigen frequency features are extracted by Sobel filtering, LoG filtering, and frequency domain bandpass filtering, respectively. Then, the PSEF images are created by pseudo-spectral spatial techniques to preserve additional details from the original DOM data. Moreover, we conducted experiments using the DES method to optimize the post-processing parameters of the models, thereby determining the parameter ranges for practical deployment. Compared with the Basal model, the PSEF model exhibited superior performance, as indicated by multiple measurement metrics, including the precision, recall, -score, , and robustness, etc. Additionally, a statistical analysis of the error metrics of the predicted bounding boxes shows that the PSEF model performance is excellent in predicting the size, shape, and location of impact craters. These advancements offer a more accurate and consistent method to detect the meter-sized craters on planetary surfaces, providing crucial support for the exploration and study of celestial bodies in our solar system.
撞击坑对于我们理解行星资源、地质年代和演化历史至关重要。我们设计了一种新颖的伪光谱空间特征提取与增强融合(PSEF)方法,并结合YOLO网络,以解决在检测月球表面众多且密集分布的米级撞击坑时遇到的问题。分别通过Sobel滤波、LoG滤波和频域带通滤波提取光照入射边缘特征、各向同性边缘特征和特征频率特征。然后,利用伪光谱空间技术创建PSEF图像,以保留原始DOM数据中的更多细节。此外,我们使用DES方法进行实验,以优化模型的后处理参数,从而确定实际部署的参数范围。与基础模型相比,PSEF模型表现出卓越的性能,多项测量指标表明了这一点,包括精度、召回率、F1分数、IoU和鲁棒性等。此外,对预测边界框的误差指标进行统计分析表明,PSEF模型在预测撞击坑的大小、形状和位置方面表现出色。这些进展为检测行星表面的米级撞击坑提供了一种更准确、一致的方法,为我们太阳系天体的探索和研究提供了关键支持。