College of Earth Sciences, Jilin University, 130061, Changchun, China.
Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, 100101, Beijing, China.
Nat Commun. 2020 Dec 22;11(1):6358. doi: 10.1038/s41467-020-20215-y.
Impact craters, which can be considered the lunar equivalent of fossils, are the most dominant lunar surface features and record the history of the Solar System. We address the problem of automatic crater detection and age estimation. From initially small numbers of recognized craters and dated craters, i.e., 7895 and 1411, respectively, we progressively identify new craters and estimate their ages with Chang'E data and stratigraphic information by transfer learning using deep neural networks. This results in the identification of 109,956 new craters, which is more than a dozen times greater than the initial number of recognized craters. The formation systems of 18,996 newly detected craters larger than 8 km are estimated. Here, a new lunar crater database for the mid- and low-latitude regions of the Moon is derived and distributed to the planetary community together with the related data analysis.
撞击坑可以被认为是月球上的化石,它们是月球表面最主要的特征,记录了太阳系的历史。我们解决了自动陨石坑检测和年龄估计的问题。从最初识别的陨石坑和有日期的陨石坑数量,分别为 7895 和 1411,我们使用深度神经网络的迁移学习,逐步识别新的陨石坑并估算它们的年龄,利用嫦娥数据和地层信息。这导致了 109956 个新陨石坑的识别,比最初识别的陨石坑数量增加了十多倍。估计了 18996 个新探测到的大于 8km 的陨石坑的形成系统。在这里,一个新的月球陨石坑数据库被用于月球中低纬度地区,并与相关数据分析一起分发给行星科学界。