Department of Medical Informatics and Biostatistics, Graduate School, Yonsei University, Seoul 03722, Republic of Korea.
National Health BigData Clinical Research Institute, Yonsei University Wonju Industry-Academic Cooperation Foundation, Wonju 26426, Republic of Korea.
Sensors (Basel). 2024 Aug 12;24(16):5222. doi: 10.3390/s24165222.
Arrhythmias range from mild nuisances to potentially fatal conditions, detectable through electrocardiograms (ECGs). With advancements in wearable technology, ECGs can now be monitored on-the-go, although these devices often capture noisy data, complicating accurate arrhythmia detection. This study aims to create a new deep learning model that utilizes generative adversarial networks (GANs) for effective noise removal and ResNet for precise arrhythmia classification from wearable ECG data. We developed a deep learning model that cleans ECG measurements from wearable devices and detects arrhythmias using refined data. We pretrained our model using the MIT-BIH Arrhythmia and Noise databases. Least squares GANs were used for noise reduction, maintaining the integrity of the original ECG signal, while a residual network classified the type of arrhythmia. After initial training, we applied transfer learning with actual ECG data. Our noise removal model significantly enhanced data clarity, achieving over 30 dB in a signal-to-noise ratio. The arrhythmia detection model was highly accurate, with an F1-score of 99.10% for noise-free data. The developed model is capable of real-time, accurate arrhythmia detection using wearable ECG devices, allowing for immediate patient notification and facilitating timely medical response.
心律失常的范围从轻微的不适到潜在的致命状况都有,通过心电图(ECG)即可检测到。随着可穿戴技术的进步,现在可以在移动中监测 ECG,但这些设备通常会捕获嘈杂的数据,这使得准确检测心律失常变得复杂。本研究旨在创建一个新的深度学习模型,该模型利用生成对抗网络(GAN)从可穿戴 ECG 数据中进行有效的噪声消除和精确的心律失常分类。我们开发了一个利用从可穿戴设备中清洁 ECG 测量值并使用经过改进的数据检测心律失常的深度学习模型。我们使用麻省理工学院-贝斯以色列医院心律失常和噪声数据库对模型进行了预训练。最小二乘 GAN 用于减少噪声,同时保持原始 ECG 信号的完整性,而残差网络则对心律失常的类型进行分类。在初始训练后,我们使用实际的 ECG 数据进行了迁移学习。我们的噪声消除模型显著提高了数据清晰度,信噪比超过 30dB。心律失常检测模型具有很高的准确性,对于无噪声数据的 F1 得分为 99.10%。该模型能够使用可穿戴 ECG 设备实时、准确地检测心律失常,及时通知患者并促进及时的医疗响应。