Suppr超能文献

基于心电图信号的去噪和心律失常分类实时服务模型的开发与验证。

Development and Validation of a Real-Time Service Model for Noise Removal and Arrhythmia Classification Using Electrocardiogram Signals.

机构信息

Department of Medical Informatics and Biostatistics, Graduate School, Yonsei University, Seoul 03722, Republic of Korea.

National Health BigData Clinical Research Institute, Yonsei University Wonju Industry-Academic Cooperation Foundation, Wonju 26426, Republic of Korea.

出版信息

Sensors (Basel). 2024 Aug 12;24(16):5222. doi: 10.3390/s24165222.

Abstract

Arrhythmias range from mild nuisances to potentially fatal conditions, detectable through electrocardiograms (ECGs). With advancements in wearable technology, ECGs can now be monitored on-the-go, although these devices often capture noisy data, complicating accurate arrhythmia detection. This study aims to create a new deep learning model that utilizes generative adversarial networks (GANs) for effective noise removal and ResNet for precise arrhythmia classification from wearable ECG data. We developed a deep learning model that cleans ECG measurements from wearable devices and detects arrhythmias using refined data. We pretrained our model using the MIT-BIH Arrhythmia and Noise databases. Least squares GANs were used for noise reduction, maintaining the integrity of the original ECG signal, while a residual network classified the type of arrhythmia. After initial training, we applied transfer learning with actual ECG data. Our noise removal model significantly enhanced data clarity, achieving over 30 dB in a signal-to-noise ratio. The arrhythmia detection model was highly accurate, with an F1-score of 99.10% for noise-free data. The developed model is capable of real-time, accurate arrhythmia detection using wearable ECG devices, allowing for immediate patient notification and facilitating timely medical response.

摘要

心律失常的范围从轻微的不适到潜在的致命状况都有,通过心电图(ECG)即可检测到。随着可穿戴技术的进步,现在可以在移动中监测 ECG,但这些设备通常会捕获嘈杂的数据,这使得准确检测心律失常变得复杂。本研究旨在创建一个新的深度学习模型,该模型利用生成对抗网络(GAN)从可穿戴 ECG 数据中进行有效的噪声消除和精确的心律失常分类。我们开发了一个利用从可穿戴设备中清洁 ECG 测量值并使用经过改进的数据检测心律失常的深度学习模型。我们使用麻省理工学院-贝斯以色列医院心律失常和噪声数据库对模型进行了预训练。最小二乘 GAN 用于减少噪声,同时保持原始 ECG 信号的完整性,而残差网络则对心律失常的类型进行分类。在初始训练后,我们使用实际的 ECG 数据进行了迁移学习。我们的噪声消除模型显著提高了数据清晰度,信噪比超过 30dB。心律失常检测模型具有很高的准确性,对于无噪声数据的 F1 得分为 99.10%。该模型能够使用可穿戴 ECG 设备实时、准确地检测心律失常,及时通知患者并促进及时的医疗响应。

相似文献

2
A New ECG Denoising Framework Using Generative Adversarial Network.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Mar-Apr;18(2):759-764. doi: 10.1109/TCBB.2020.2976981. Epub 2021 Apr 6.
4
Hierarchical deep learning with Generative Adversarial Network for automatic cardiac diagnosis from ECG signals.
Comput Biol Med. 2023 Mar;155:106641. doi: 10.1016/j.compbiomed.2023.106641. Epub 2023 Feb 8.
5
ECG signal classification in wearable devices based on compressed domain.
PLoS One. 2023 Apr 4;18(4):e0284008. doi: 10.1371/journal.pone.0284008. eCollection 2023.
6
Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising.
Comput Math Methods Med. 2023 Feb 10;2023:6737102. doi: 10.1155/2023/6737102. eCollection 2023.
7
A CNN Model for Cardiac Arrhythmias Classification Based on Individual ECG Signals.
Cardiovasc Eng Technol. 2022 Aug;13(4):548-557. doi: 10.1007/s13239-021-00599-8. Epub 2022 Jan 3.
8
A robust ECG denoising technique using variable frequency complex demodulation.
Comput Methods Programs Biomed. 2021 Mar;200:105856. doi: 10.1016/j.cmpb.2020.105856. Epub 2020 Nov 21.
9
[Deep residual convolutional neural network for recognition of electrocardiogram signal arrhythmias].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Apr 25;36(2):189-198. doi: 10.7507/1001-5515.201712031.

引用本文的文献

本文引用的文献

1
ECG-based real-time arrhythmia monitoring using quantized deep neural networks: A feasibility study.
Comput Biol Med. 2022 Apr;143:105249. doi: 10.1016/j.compbiomed.2022.105249. Epub 2022 Jan 22.
3
ECG Heartbeat Classification Based on an Improved ResNet-18 Model.
Comput Math Methods Med. 2021 Apr 30;2021:6649970. doi: 10.1155/2021/6649970. eCollection 2021.
4
A wearable real-time telemonitoring electrocardiogram device compared with traditional Holter monitoring.
J Biomed Res. 2020 Dec 18;35(3):238-246. doi: 10.7555/JBR.34.20200074.
5
Computational Diagnostic Techniques for Electrocardiogram Signal Analysis.
Sensors (Basel). 2020 Nov 5;20(21):6318. doi: 10.3390/s20216318.
6
Electrocardiogram Beat-Classification Based on a ResNet Network.
Stud Health Technol Inform. 2019 Aug 21;264:55-59. doi: 10.3233/SHTI190182.
7
Arrhythmia detection using deep convolutional neural network with long duration ECG signals.
Comput Biol Med. 2018 Nov 1;102:411-420. doi: 10.1016/j.compbiomed.2018.09.009. Epub 2018 Sep 15.
8
Electrocardiograph signal denoising based on sparse decomposition.
Healthc Technol Lett. 2017 Jun 29;4(4):134-137. doi: 10.1049/htl.2016.0097. eCollection 2017 Aug.
9
Arrhythmia ECG noise reduction by ensemble empirical mode decomposition.
Sensors (Basel). 2010;10(6):6063-80. doi: 10.3390/s100606063. Epub 2010 Jun 17.
10
The impact of the MIT-BIH arrhythmia database.
IEEE Eng Med Biol Mag. 2001 May-Jun;20(3):45-50. doi: 10.1109/51.932724.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验