Suppr超能文献

LDCNN:一种使用 ECG 信号的新心律失常检测技术,采用线性深度卷积神经网络。

LDCNN: A new arrhythmia detection technique with ECG signals using a linear deep convolutional neural network.

机构信息

Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

出版信息

Physiol Rep. 2024 Sep;12(17):e16182. doi: 10.14814/phy2.16182.

Abstract

The electrocardiogram (ECG) is a fundamental and widely used tool for diagnosing cardiovascular diseases. It involves recording cardiac electrical signals using electrodes, which illustrate the functioning of cardiac muscles during contraction and relaxation phases. ECG is instrumental in identifying abnormal cardiac activity, heart attacks, and various cardiac conditions. Arrhythmia detection, a critical aspect of ECG analysis, entails accurately classifying heartbeats. However, ECG signal analysis demands a high level of expertise, introducing the possibility of human errors in interpretation. Hence, there is a clear need for robust automated detection techniques. Recently, numerous methods have emerged for arrhythmia detection from ECG signals. In our research, we developed a novel one-dimensional deep neural network technique called linear deep convolutional neural network (LDCNN) to identify arrhythmias from ECG signals. We compare our suggested method with several state-of-the-art algorithms for arrhythmia detection. We evaluate our methodology using benchmark datasets, including the PTB Diagnostic ECG and MIT-BIH Arrhythmia databases. Our proposed method achieves high accuracy rates of 99.24% on the PTB Diagnostic ECG dataset and 99.38% on the MIT-BIH Arrhythmia dataset.

摘要

心电图(ECG)是诊断心血管疾病的基本且广泛应用的工具。它涉及使用电极记录心脏电信号,这些信号描绘了心肌在收缩和舒张阶段的功能。ECG 有助于识别异常的心脏活动、心脏病发作和各种心脏状况。心律失常检测是 ECG 分析的一个关键方面,需要准确地对心跳进行分类。然而,ECG 信号分析需要高度的专业知识,这就增加了在解释过程中出现人为错误的可能性。因此,需要有可靠的自动化检测技术。最近,已经出现了许多用于从 ECG 信号中检测心律失常的方法。在我们的研究中,我们开发了一种称为线性深度卷积神经网络(LDCNN)的新型一维深度神经网络技术,用于从 ECG 信号中识别心律失常。我们将我们的建议方法与几种用于心律失常检测的最先进算法进行了比较。我们使用基准数据集(包括 PTB 诊断 ECG 和 MIT-BIH 心律失常数据库)来评估我们的方法。我们的方法在 PTB 诊断 ECG 数据集上达到了 99.24%的高精度率,在 MIT-BIH 心律失常数据集上达到了 99.38%的高精度率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验