Suppr超能文献

通过融合YOLO-SCG与点云聚类实现目标检测与信息感知

Object Detection and Information Perception by Fusing YOLO-SCG and Point Cloud Clustering.

作者信息

Liu Chunyang, Zhao Zhixin, Zhou Yifei, Ma Lin, Sui Xin, Huang Yan, Yang Xiaokang, Ma Xiqiang

机构信息

School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China.

Longmen Laboratory, Luoyang 471003, China.

出版信息

Sensors (Basel). 2024 Aug 19;24(16):5357. doi: 10.3390/s24165357.

Abstract

Robots need to sense information about the external environment before moving, which helps them to recognize and understand their surroundings so that they can plan safe and effective paths and avoid obstacles. Conventional algorithms using a single sensor cannot obtain enough information and lack real-time capabilities. To solve these problems, we propose an information perception algorithm with vision as the core and the fusion of LiDAR. Regarding vision, we propose the YOLO-SCG model, which is able to detect objects faster and more accurately. When processing point clouds, we integrate the detection results of vision for local clustering, improving both the processing speed of the point cloud and the detection effectiveness. Experiments verify that our proposed YOLO-SCG algorithm improves accuracy by 4.06% and detection speed by 7.81% compared to YOLOv9, and our algorithm excels in distinguishing different objects in the clustering of point clouds.

摘要

机器人在移动之前需要感知外部环境信息,这有助于它们识别和理解周围环境,以便规划安全有效的路径并避开障碍物。使用单一传感器的传统算法无法获取足够的信息且缺乏实时能力。为了解决这些问题,我们提出一种以视觉为核心并融合激光雷达的信息感知算法。关于视觉,我们提出了YOLO-SCG模型,它能够更快、更准确地检测物体。在处理点云时,我们将视觉检测结果进行整合用于局部聚类,提高了点云的处理速度和检测效果。实验验证,与YOLOv9相比,我们提出的YOLO-SCG算法准确率提高了4.06%,检测速度提高了7.81%,并且我们的算法在点云聚类中区分不同物体方面表现出色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbaa/11360762/c64acd805339/sensors-24-05357-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验