Suppr超能文献

点云压缩:对户外场景中目标检测的影响。

Point Cloud Compression: Impact on Object Detection in Outdoor Contexts.

机构信息

Department of Electrical and Computer Engineering, University of Coimbra, 3030-290 Coimbra, Portugal.

Institute of Systems and Robotics, University of Coimbra, 3030-290 Coimbra, Portugal.

出版信息

Sensors (Basel). 2022 Aug 2;22(15):5767. doi: 10.3390/s22155767.

Abstract

Increasing demand for more reliable and safe autonomous driving means that data involved in the various aspects of perception, such as object detection, will become more granular as the number and resolution of sensors progress. Using these data for on-the-fly object detection causes problems related to the computational complexity of onboard processing in autonomous vehicles, leading to a desire to offload computation to roadside infrastructure using vehicle-to-infrastructure communication links. The need to transmit sensor data also arises in the context of vehicle fleets exchanging sensor data, over vehicle-to-vehicle communication links. Some types of sensor data modalities, such as Light Detection and Ranging (LiDAR) point clouds, are so voluminous that their transmission is impractical without data compression. With most emerging autonomous driving implementations being anchored on point cloud data, we propose to evaluate the impact of point cloud compression on object detection. To that end, two different object detection architectures are evaluated using point clouds from the KITTI object dataset: raw point clouds and point clouds compressed with a state-of-the-art encoder and three different compression levels. The analysis is extended to the impact of compression on depth maps generated from images projected from the point clouds, with two conversion methods tested. Results show that low-to-medium levels of compression do not have a major impact on object detection performance, especially for larger objects. Results also show that the impact of point cloud compression is lower when detecting objects using depth maps, placing this particular method of point cloud data representation on a competitive footing compared to raw point cloud data.

摘要

对更可靠和更安全的自动驾驶的需求不断增加,这意味着感知等各个方面所涉及的数据将随着传感器数量和分辨率的提高而变得更加精细。在自动驾驶车辆中,使用这些数据进行实时目标检测会导致与车载处理的计算复杂性相关的问题,从而希望使用车对基础设施通信链路将计算卸载到路边基础设施。在车辆车队通过车对车通信链路交换传感器数据的情况下,也需要传输传感器数据。某些类型的传感器数据模式,例如光检测和测距 (LiDAR) 点云,如此庞大,以至于如果不进行数据压缩,传输是不切实际的。由于大多数新兴的自动驾驶实现都基于点云数据,我们提出评估点云压缩对点检测的影响。为此,使用 KITTI 物体数据集的点云评估了两种不同的目标检测架构:原始点云和使用最先进的编码器和三种不同压缩级别压缩的点云。分析扩展到了压缩对点云从投影图像生成的深度图的影响,测试了两种转换方法。结果表明,低到中等压缩水平对点检测性能的影响不大,尤其是对于较大的物体。结果还表明,使用深度图检测物体时,点云压缩的影响较低,与原始点云数据相比,这种特殊的点云数据表示方法具有竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0517/9370965/539975942de1/sensors-22-05767-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验