Suppr超能文献

虚拟演讲中吸引观众注意力的方法

An Approach of Query Audience's Attention in Virtual Speech.

机构信息

School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710061, China.

出版信息

Sensors (Basel). 2024 Aug 20;24(16):5363. doi: 10.3390/s24165363.

Abstract

Virtual speeches are a very popular way for remote multi-user communication, but it has the disadvantage of the lack of eye contact. This paper proposes the evaluation of an online audience attention based on gaze tracking. Our research only uses webcams to capture the audience's head posture, gaze time, and other features, providing a low-cost method for attention monitoring with reference values across multiple domains. Meantime, we also propose a set of indexes which can be used to evaluate the audience's degree of attention, making up for the fact that the speaker cannot gauge the audience's concentration through eye contact during online speeches. We selected 96 students for a 20 min group simulation session and used Spearman's correlation coefficient to analyze the correlation between our evaluation indicators and concentration. The result showed that each evaluation index has a significant correlation with the degree of attention ( = 0.01), and all the students in the focused group met the thresholds set by each of our evaluation indicators, while the students in the non-focused group failed to reach the standard. During the simulation, eye movement data and EEG signals were measured synchronously for the second group of students. The EEG results of the students were consistent with the systematic evaluation. The performance of the measured EEG signals confirmed the accuracy of the systematic evaluation.

摘要

虚拟演讲是远程多用户通信的一种非常流行的方式,但它存在缺乏眼神交流的缺点。本文提出了一种基于眼动追踪的在线观众注意力评估方法。我们的研究仅使用网络摄像头来捕捉观众的头部姿势、注视时间和其他特征,为跨多个领域的注意力监测提供了一种低成本的方法,并提供了一套可用于评估观众注意力程度的指标,弥补了在线演讲中演讲者无法通过眼神交流来衡量观众注意力集中程度的事实。我们选择了 96 名学生进行了 20 分钟的小组模拟会议,并使用 Spearman 相关系数分析了我们的评估指标与注意力之间的相关性。结果表明,每个评估指标与注意力程度都有显著的相关性( = 0.01),而且专注组的所有学生都达到了我们每个评估指标设定的阈值,而不专注组的学生则未能达到标准。在模拟过程中,我们同步测量了第二组学生的眼动数据和 EEG 信号。学生的 EEG 结果与系统评估一致。测量 EEG 信号的性能证实了系统评估的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e13/11359125/790d9b8a6e58/sensors-24-05363-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验