College of Mathematics and Information Science, Hebei University, Wusi Road 180, Baoding, 071000, Hebei, China; Hebei Key Laboratory of Machine Learning and Computational Intelligence, Hebei University, Wusi Road 180, Baoding, 071000, Hebei, China.
College of Mathematics and Information Science, Hebei University, Wusi Road 180, Baoding, 071000, Hebei, China.
Comput Biol Med. 2024 Oct;181:109046. doi: 10.1016/j.compbiomed.2024.109046. Epub 2024 Aug 27.
In deep-learning-based medical image segmentation tasks, semi-supervised learning can greatly reduce the dependence of the model on labeled data. However, existing semi-supervised medical image segmentation methods face the challenges of object boundary ambiguity and a small amount of available data, which limit the application of segmentation models in clinical practice. To solve these problems, we propose a novel semi-supervised medical image segmentation network based on dual-consistency guidance, which can extract reliable semantic information from unlabeled data over a large spatial and dimensional range in a simple and effective manner. This serves to improve the contribution of unlabeled data to the model accuracy. Specifically, we construct a split weak and strong consistency constraint strategy to capture data-level and feature-level consistencies from unlabeled data to improve the learning efficiency of the model. Furthermore, we design a simple multi-scale low-level detail feature enhancement module to improve the extraction of low-level detail contextual information, which is crucial to accurately locate object contours and avoid omitting small objects in semi-supervised medical image dense prediction tasks. Quantitative and qualitative evaluations on six challenging datasets demonstrate that our model outperforms other semi-supervised segmentation models in terms of segmentation accuracy and presents advantages in terms of generalizability. Code is available at https://github.com/0Jmyy0/SSMIS-DC.
在基于深度学习的医学图像分割任务中,半监督学习可以大大减少模型对标记数据的依赖。然而,现有的半监督医学图像分割方法面临着物体边界模糊和可用数据量少的挑战,这限制了分割模型在临床实践中的应用。为了解决这些问题,我们提出了一种基于双重一致性指导的新型半监督医学图像分割网络,该网络可以简单有效地从大量的空间和维度范围内的未标记数据中提取可靠的语义信息。这有助于提高未标记数据对模型准确性的贡献。具体来说,我们构建了一种分割弱和强一致性约束策略,从未标记数据中捕获数据级和特征级一致性,以提高模型的学习效率。此外,我们设计了一个简单的多尺度低级细节特征增强模块,以提高对低级细节上下文信息的提取能力,这对于准确定位物体轮廓和避免在半监督医学图像密集预测任务中遗漏小物体至关重要。在六个具有挑战性的数据集上的定量和定性评估表明,我们的模型在分割准确性方面优于其他半监督分割模型,并且在泛化能力方面具有优势。代码可在 https://github.com/0Jmyy0/SSMIS-DC 获得。