Suppr超能文献

通过多尺度力学分析优化生物打印水凝胶的黏弹性和硬度以增强 3D 细胞培养。

Tuning viscoelasticity and stiffness in bioprinted hydrogels for enhanced 3D cell culture: A multi-scale mechanical analysis.

机构信息

Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands.

3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France.

出版信息

J Mech Behav Biomed Mater. 2024 Nov;159:106696. doi: 10.1016/j.jmbbm.2024.106696. Epub 2024 Aug 22.

Abstract

Bioprinted hydrogels are extensively studied to provide an artificial matrix for 3D cell culture. The success of bioprinting hydrogels relies on fine-tuning their rheology and composition to achieve shear-thinning behavior. However, a challenge arises from the limited viscoelastic and stiffness range accessible from a single hydrogel formulation. Nevertheless, hydrogel mechanical properties are recognized as essential cues influencing cell phenotype, migration, and differentiation. Thus, it is crucial to develop a system to easily modulate bioprinted hydrogels' mechanical behaviors. In this work, we modulated the viscoelastic properties and stiffness of bioprinted hydrogels composed of fibrinogen, alginate, and gelatin by tuning the crosslinking bath solution. Various concentrations of calcium ionically crosslinked alginate, while transglutaminase crosslinked gelatin. Subsequently, we characterized the mechanical behavior of our bioprinted hydrogels from the nanoscale to the macroscale. This approach enabled the production of diverse bioprinted constructs, either with similar elastic behavior but different elastic moduli or with similar elastic moduli but different viscoelastic behavior from the same hydrogel formulation. Culturing fibroblasts in the hydrogels for 33 days revealed a preference for cell growth and matrix secretion in the viscoelastic hydrogels. This work demonstrates the suitability of the method to decouple the effects of material mechanical from biochemical composition cues on 3D cultured cells.

摘要

生物打印水凝胶被广泛研究,以提供用于 3D 细胞培养的人工基质。生物打印水凝胶的成功依赖于精细调整其流变学和组成以实现剪切稀化行为。然而,从单一水凝胶配方可获得的有限粘弹性和刚度范围带来了挑战。然而,水凝胶的机械性能被认为是影响细胞表型、迁移和分化的重要线索。因此,开发一种易于调节生物打印水凝胶机械性能的系统至关重要。在这项工作中,我们通过调整交联浴溶液来调节由纤维蛋白原、藻酸盐和明胶组成的生物打印水凝胶的粘弹性和刚度。不同浓度的钙离子离子交联藻酸盐,而转谷氨酰胺酶交联明胶。随后,我们从纳米到宏观尺度对我们的生物打印水凝胶的机械行为进行了表征。这种方法能够生产出不同的生物打印结构,它们要么具有相似的弹性行为但不同的弹性模量,要么具有相似的弹性模量但不同的粘弹性行为,而这些都是来自于相同的水凝胶配方。将成纤维细胞在水凝胶中培养 33 天,揭示了细胞在粘弹性水凝胶中生长和基质分泌的偏好。这项工作证明了该方法适合将材料力学与生化组成线索对 3D 培养细胞的影响分离开来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验