Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands.
Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands.
Biophys J. 2024 Oct 15;123(20):3533-3539. doi: 10.1016/j.bpj.2024.08.024. Epub 2024 Aug 30.
The C9orf72 gene associated with amyotrophic lateral sclerosis/frontotemporal dementia is translated to five dipeptide repeat proteins, among which poly-proline-arginine (PR) is the most toxic in cell and animal models, contributing to a variety of cellular defects. It has been proposed that polyPR disrupts nucleocytoplasmic transport (NCT) through several mechanisms including accumulation in the nuclear pore complex (NPC), accumulation in the nucleolus, and direct interactions with transport receptors. The NPC, which is the key regulator of transport between the cytoplasm and nucleus, plays a central role in these suggested mechanisms. Exploring polyPR interaction with the NPC provides valuable insight into the molecular details of polyPR-mediated NCT defects. To address this, we use coarse-grained molecular dynamics models of polyPR and the yeast NPC lined with intrinsically disordered FG-nucleoporins (FG-Nups). Our findings indicate no aggregation of polyPR within the NPC or permanent binding to FG-Nups. Instead, polyPR translocates through the NPC, following a trajectory through the central low-density region of the pore. In the case of longer polyPRs, we observe a higher energy barrier for translocation and a narrower translocation channel. Our study shows that polyPR and FG-Nups are mainly engaged in steric interactions inside the NPC with only a small contribution of specific cation-pi, hydrophobic, and electrostatic interactions, allowing polyPR to overcome the entropic barrier of the NPC in a size-dependent manner.
与肌萎缩性侧索硬化症/额颞叶痴呆相关的 C9orf72 基因被翻译成五种二肽重复蛋白,其中多聚脯氨酸-精氨酸(PR)在细胞和动物模型中毒性最强,导致多种细胞缺陷。有人提出,多聚 PR 通过几种机制破坏核质转运(NCT),包括在核孔复合体(NPC)中积累、在核仁中积累以及与转运受体的直接相互作用。NPC 是细胞质和细胞核之间运输的关键调节剂,在这些建议的机制中起着核心作用。探索多聚 PR 与 NPC 的相互作用为多聚 PR 介导的 NCT 缺陷的分子细节提供了有价值的见解。为了解决这个问题,我们使用多聚 PR 和酵母 NPC 内的固有无序 FG-Nups(FG-Nups)的粗粒度分子动力学模型。我们的研究结果表明,多聚 PR 不会在 NPC 内聚集或与 FG-Nups 永久结合。相反,多聚 PR 通过 NPC 转运,沿着孔中心低密度区域的轨迹转运。对于较长的多聚 PR,我们观察到转运的能量势垒更高,转运通道更窄。我们的研究表明,多聚 PR 和 FG-Nups 主要在 NPC 内通过空间相互作用结合,只有少量特定的阳离子-π、疏水和静电相互作用的贡献,允许多聚 PR 以尺寸依赖的方式克服 NPC 的熵障碍。