Suppr超能文献

外周血淋巴细胞亚群对急性缺血性脑卒中患者预后的影响:一种潜在的疾病预测模型方法。

Impact of peripheral lymphocyte subsets on prognosis for patients after acute ischemic stroke: A potential disease prediction model approach.

机构信息

Department of Neurology, Stroke Center, the First Hospital of Jilin University, Changchun, China.

Department of Neurology, Neuroscience Research Center, the First Hospital of Jilin University, Changchun, China.

出版信息

CNS Neurosci Ther. 2024 Aug;30(8):e70023. doi: 10.1111/cns.70023.

Abstract

AIMS

To investigate the relationship between peripheral blood lymphocyte subsets and prognosis in patients with acute ischemic stroke (AIS).

METHODS

We enrolled 294 patients with AIS and collected peripheral blood samples for analysis of lymphocyte subsets. Prognosis was assessed at 3 months using the modified Rankin Scale (mRS). Association between lymphocyte count and poor outcomes (mRS score >2) was assessed using logistic regression. Individualized prediction models were developed to predict poor outcomes.

RESULTS

Patients in the mRS score ≤2 group had higher T-cell percentage (odds ratio [OR] = 0.947; 95% confidence interval [CI]: 0.899-0.998; p = 0.040), CD3 T-cell count (OR = 0.999; 95% CI: 0.998-1.000; p = 0.018), and CD4 T-cell count (OR = 0.998; 95% CI: 0.997-1.000; p = 0.030) than those in the mRS score >2 group 1-3 days after stroke. The prediction model for poor prognosis based on the CD4 T-cell count showed good discrimination (area under the curve of 0.844), calibration (p > 0.05), and clinical utility.

CONCLUSION

Lower T cell percentage, CD3, and CD4 T-cell counts 1-3 days after stroke were independently associated with increased risk of poor prognosis. Individualized predictive model of poor prognosis based on CD4 T-cell count have good accuracy and may predict disease prognosis.

摘要

目的

探讨急性缺血性脑卒中(AIS)患者外周血淋巴细胞亚群与预后的关系。

方法

纳入 294 例 AIS 患者,采集外周血样本进行淋巴细胞亚群分析。采用改良 Rankin 量表(mRS)于 3 个月时评估预后。采用 logistic 回归分析淋巴细胞计数与不良结局(mRS 评分>2)的关系。建立个体化预测模型预测不良结局。

结果

mRS 评分≤2 组患者 T 细胞百分比(优势比 [OR] = 0.947;95%置信区间 [CI]:0.899-0.998;p = 0.040)、CD3 T 细胞计数(OR = 0.999;95% CI:0.998-1.000;p = 0.018)和 CD4 T 细胞计数(OR = 0.998;95% CI:0.997-1.000;p = 0.030)高于 mRS 评分>2 组患者。发病后 1-3 天,基于 CD4 T 细胞计数的不良预后预测模型具有良好的判别能力(曲线下面积为 0.844)、校准度(p>0.05)和临床实用性。

结论

发病后 1-3 天 T 细胞百分比、CD3 和 CD4 T 细胞计数降低与不良预后风险增加独立相关。基于 CD4 T 细胞计数的不良预后个体化预测模型具有较高的准确性,可预测疾病预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b860/11358587/ef5d3b42699e/CNS-30-e70023-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验