Jakob Alexander M, Robson Simon G, Firgau Hannes R, Mourik Vincent, Schmitt Vivien, Holmes Danielle, Posselt Matthias, Mayes Edwin L H, Spemann Daniel, McCallum Jeffrey C, Morello Andrea, Jamieson David N
School of Physics, University of Melbourne, Parkville, VIC, 3010, Australia.
ARC Centre for Quantum Computation and Communication Technology (CQC2T), University of Technology Sydney, Sydney, NSW, 2007, Australia.
Adv Mater. 2024 Oct;36(40):e2405006. doi: 10.1002/adma.202405006. Epub 2024 Aug 29.
Semiconductor spin qubits combine excellent quantum performance with the prospect of manufacturing quantum devices using industry-standard metal-oxide-semiconductor (MOS) processes. This applies also to ion-implanted donor spins, which further afford exceptional coherence times and large Hilbert space dimension in their nuclear spin. Here multiple strategies are demonstrated and integrated to manufacture scale-up donor-based quantum computers. PF molecule implants are used to triple the placement certainty compared to P ions, while attaining 99.99% confidence in detecting the implant. Similar confidence is retained by implanting heavier atoms such as Sb and Bi, which represent high-dimensional qudits for quantum information processing, while Sb molecules enable deterministic formation of closely-spaced qudits. The deterministic formation of regular arrays of donor atoms with 300 nm spacing is demonstrated, using step-and-repeat implantation through a nano aperture. These methods cover the full gamut of technological requirements for the construction of donor-based quantum computers in silicon.
半导体自旋量子比特将出色的量子性能与使用行业标准金属氧化物半导体(MOS)工艺制造量子器件的前景相结合。这同样适用于离子注入施主自旋,其在核自旋方面还具有超长的相干时间和较大的希尔伯特空间维度。本文展示并整合了多种策略来制造规模化的基于施主的量子计算机。与P离子相比,PF分子注入可将植入位置的确定性提高两倍,同时在检测植入时达到99.99%的置信度。通过注入诸如Sb和Bi等较重的原子也能保持类似的置信度,这些原子代表用于量子信息处理的高维量子位,而Sb分子能够确定性地形成间距紧密的量子位。利用通过纳米孔径的分步重复注入,展示了间距为300 nm的规则施主原子阵列的确定性形成。这些方法涵盖了构建硅基施主量子计算机的全部技术要求。