Konidakis Ioannis, Dragosli Foteini, Cheruvathoor Poulose Aby, Kašlík Josef, Bakandritsos Aristides, Zbořil Radek, Stratakis Emmanuel
Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Crete, Greece.
Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
ACS Appl Opt Mater. 2024 Jul 23;2(8):1636-1643. doi: 10.1021/acsaom.4c00237. eCollection 2024 Aug 23.
Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on demanding chemical processes or on the employment of expensive ultrafast laser equipment. In this work, we demonstrate an advanced, simple, low-temperature, postmelting encapsulation procedure for the development of glass waveguides. Specifically, silver iodide phosphate glass microwires (MWs) are drawn from splat-quenched glasses. These MWs are then incorporated in a controlled manner within transparent silver phosphate glass matrices. The judicious selection of glass compositions ensures that the refractive index of the host phosphate glass is lower than that of the embedded MWs. This facilitates the propagation of light inside the encapsulated higher refractive index MWs, leading to the facile development of waveguides. Importantly, we substantially enhance the light transmission within the MWs by leveraging the plasmon resonance effects due to the presence of silver nanoparticles spontaneously generated owing to the silver iodide phosphate glass composition. Employing this innovative approach, we have successfully engineered waveguide devices incorporating either one or two MWs. Remarkably, the dual MW devices are capable of transmitting light of different colors and in multipath direction, rendering the developed waveguides outstanding candidates for extending the functionalities of diverse photonic and optoelectronic circuits, as well as in intelligent signaling applications in smart glass technologies.
玻璃波导是先进光子电路的基本组件,在包括量子信息处理、光生成、成像、数据存储和传感平台在内的各种应用中发挥着关键作用。到目前为止,玻璃波导的制造主要依赖于苛刻的化学工艺或昂贵的超快激光设备。在这项工作中,我们展示了一种用于玻璃波导开发的先进、简单、低温的后熔融封装工艺。具体来说,磷酸碘化银玻璃微丝(MWs)是从急冷玻璃中拉制出来的。然后将这些微丝以可控的方式并入透明的磷酸银玻璃基质中。对玻璃成分的明智选择确保了主体磷酸玻璃的折射率低于嵌入微丝的折射率。这有利于光在封装的高折射率微丝内传播,从而便于波导的开发。重要的是,由于磷酸碘化银玻璃成分自发产生的银纳米颗粒的存在,我们利用等离子体共振效应显著提高了微丝内的光传输。采用这种创新方法,我们成功地制造了包含一根或两根微丝的波导器件。值得注意的是双微丝器件能够传输不同颜色和多路径方向的光,使开发的波导成为扩展各种光子和光电器件功能以及智能玻璃技术中智能信号应用的优秀候选者。