Suppr超能文献

ZD-3通过调节肉鸡回肠微生物群和胆汁酸肠肝循环来防止过多的脂肪沉积。

ZD-3 prevents excessive fat deposition by regulating ileal microbiota and bile acids enterohepatic circulation in broilers.

作者信息

Feng Jiaqi, Wang Fang, Nan Shanshan, Dou Lijing, Pang Xiaotong, Niu Junli, Zhang Wenju, Nie Cunxi

机构信息

College of Animal Science and Technology, Shihezi University, Shihezi, China.

Animal Husbandry and Veterinary Workstation of the 8th Division, Shihezi, China.

出版信息

Front Microbiol. 2024 Aug 14;15:1419424. doi: 10.3389/fmicb.2024.1419424. eCollection 2024.

Abstract

INTRODUCTION

Evidence suggests that the dietary intake of ZD-3 (ZD-3) has various health benefits, but the treatment mechanisms and effects remain unclear. The aim of this study investigates the effect of ZD-3 on reducing fat deposition in broilers and the underlying mechanism.

METHODS

180 one-day-old, yellow-feathered broilers were randomly divided into three groups: control (CON) group fed a basal diet, an active ZD-3 (ZD) group supplemented with ZD, and a heat-inactivated Candida tropicalis ZD-3 (HZD) group supplemented with HZD. The experiment lasted for 28 d.

RESULTS

The ZD and HZD treatments significantly reduced the abdominal fat index ( < 0.05), decreased TG levels in serum and liver ( < 0.05), altered the ileal microbial composition by reducing the Firmicutes to Bacteroidetes (F/B) ratio. Additionally, the ZD and HZD treatments reduced liver cholesterol by decreasing ileal FXR-FGF19 signaling and increasing liver FXR-SHP signaling ( < 0.05). The ZD and HZD treatments also changed liver PC and TG classes lipid composition, regulating liver lipid metabolism by promoting TG degradation and modulating the signal transduction of the cell membrane.

DISCUSSION

Overall, ZD-3 was effective in improving lipid metabolism in broilers by regulating the ileal microbial composition and BAs enterohepatic circulation. This study provides a theoretical basis for the development and application of ZD-3 for the regulation of lipid metabolism in broilers.

摘要

引言

有证据表明,ZD-3的膳食摄入具有多种健康益处,但其治疗机制和效果仍不清楚。本研究旨在探讨ZD-3对减少肉鸡脂肪沉积的作用及其潜在机制。

方法

将180只1日龄黄羽肉鸡随机分为三组:对照组(CON)饲喂基础日粮,活性ZD-3(ZD)组添加ZD,热灭活热带假丝酵母ZD-3(HZD)组添加HZD。实验持续28天。

结果

ZD和HZD处理显著降低了腹脂指数(P<0.05),降低了血清和肝脏中的甘油三酯水平(P<0.05),通过降低厚壁菌门与拟杆菌门(F/B)比例改变了回肠微生物组成。此外,ZD和HZD处理通过降低回肠FXR-FGF19信号通路和增加肝脏FXR-SHP信号通路降低了肝脏胆固醇(P<0.05)。ZD和HZD处理还改变了肝脏磷脂酰胆碱(PC)和甘油三酯(TG)类脂质组成,通过促进TG降解和调节细胞膜信号转导来调节肝脏脂质代谢。

讨论

总体而言,ZD-3通过调节回肠微生物组成和胆汁酸肝肠循环,有效改善了肉鸡的脂质代谢。本研究为ZD-3在调节肉鸡脂质代谢方面的开发和应用提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fc6/11353401/2fd27839d67d/fmicb-15-1419424-g001.jpg

相似文献

1
ZD-3 prevents excessive fat deposition by regulating ileal microbiota and bile acids enterohepatic circulation in broilers.
Front Microbiol. 2024 Aug 14;15:1419424. doi: 10.3389/fmicb.2024.1419424. eCollection 2024.
3
Effects of emulsifiers on lipid metabolism and performance of yellow-feathered broilers.
BMC Vet Res. 2024 Jun 7;20(1):246. doi: 10.1186/s12917-024-04095-8.
5
Dietary succinate reduces fat deposition through gut microbiota and lipid metabolism in broilers.
Poult Sci. 2024 Aug;103(8):103954. doi: 10.1016/j.psj.2024.103954. Epub 2024 Jun 6.
8
Cottonseed meal fermented by Candida tropical reduces the fat deposition in white-feather broilers through cecum bacteria-host metabolic cross-talk.
Appl Microbiol Biotechnol. 2020 May;104(10):4345-4357. doi: 10.1007/s00253-020-10538-7. Epub 2020 Mar 30.
10
Fermented grape seed meal promotes broiler growth and reduces abdominal fat deposition through intestinal microorganisms.
Front Microbiol. 2022 Oct 10;13:994033. doi: 10.3389/fmicb.2022.994033. eCollection 2022.

本文引用的文献

1
Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis.
Sci China Life Sci. 2024 May;67(5):865-878. doi: 10.1007/s11427-023-2353-0. Epub 2023 Jul 27.
2
Gut microbiome determines therapeutic effects of OCA on NAFLD by modulating bile acid metabolism.
NPJ Biofilms Microbiomes. 2023 May 31;9(1):29. doi: 10.1038/s41522-023-00399-z.
3
Prevention of High-Fat-Diet-Induced Dyslipidemia by LP104 through Mediating Bile Acid Enterohepatic Axis Circulation and Intestinal Flora.
J Agric Food Chem. 2023 May 17;71(19):7334-7347. doi: 10.1021/acs.jafc.2c09151. Epub 2023 Apr 25.
4
Experimental diets dictate the metabolic benefits of probiotics in obesity.
Gut Microbes. 2023 Jan-Dec;15(1):2192547. doi: 10.1080/19490976.2023.2192547.
5
Ecological shifts of salivary microbiota associated with metabolic-associated fatty liver disease.
Front Cell Infect Microbiol. 2023 Feb 14;13:1131255. doi: 10.3389/fcimb.2023.1131255. eCollection 2023.
6
Acetyl-CoA metabolism in cancer.
Nat Rev Cancer. 2023 Mar;23(3):156-172. doi: 10.1038/s41568-022-00543-5. Epub 2023 Jan 19.
7
Bile acids and the gut microbiota: metabolic interactions and impacts on disease.
Nat Rev Microbiol. 2023 Apr;21(4):236-247. doi: 10.1038/s41579-022-00805-x. Epub 2022 Oct 17.
8
The ameliorative effect of probiotics on diet-induced lipid metabolism disorders: A review.
Crit Rev Food Sci Nutr. 2024;64(11):3556-3572. doi: 10.1080/10408398.2022.2132377. Epub 2022 Oct 11.
9
Orosomucoid 2 maintains hepatic lipid homeostasis through suppression of de novo lipogenesis.
Nat Metab. 2022 Sep;4(9):1185-1201. doi: 10.1038/s42255-022-00627-4. Epub 2022 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验