Zhu Xiao, Chen Jiawei, Liu Gaopan, Mo Yanbing, Xie Yihua, Zhou Kang, Wang Yonggang, Dong Xiaoli
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202412859. doi: 10.1002/anie.202412859. Epub 2024 Oct 24.
Fluorinated ether-based electrolytes are commonly employed in lithium metal batteries (LMBs) to attenuate the coordination ability of ether solvents with Li and induce inorganic-rich interphase, whereas fluorination inevitably introduces exorbitant production expenses and environmental anxieties. Herein, a non-fluorinated molecular design strategy has been conceptualized by incorporating methoxy as an electron-donating group to generate a quasi-conjugate effect for tuning the affinity of Li-solvent, thereby enabling the cyclic ether solvent 2-methoxy-1,3-dioxolane with weak solvation ability and exceptional Li metal-compatibility. Accordingly, the optimized electrolyte exhibits anion-dominant solvation structure for inorganic-rich interphase and fulfills an impressive Li plating/stripping Coulombic efficiency of 99.6 %. As-fabricated Li||LiFePO full cells with limited Li (N/P=2.5) showcase a high capacity retention of 83 % after 150 cycles, indicating excellent cycling stability. Moreover, the full LMBs demonstrate exceptional tolerance towards a wide temperature range from -20 °C to 60 °C, displaying a remarkable capacity retention of 90 % after 110 cycles at -20 °C. Such a molecular design strategy offers a promising avenue for electrolyte engineering beyond fluorination in order to cultivate high-performance LMBs.
基于氟化醚的电解质常用于锂金属电池(LMBs)中,以减弱醚类溶剂与锂的配位能力,并诱导富含无机物的界面层形成,然而氟化不可避免地带来了高昂的生产成本和环境问题。在此,我们提出了一种非氟化分子设计策略,通过引入甲氧基作为供电子基团来产生准共轭效应,从而调节锂与溶剂的亲和力,进而使具有弱溶剂化能力和优异锂金属兼容性的环状醚溶剂2-甲氧基-1,3-二氧戊环得以实现。相应地,优化后的电解质呈现出以阴离子为主导的溶剂化结构,用于形成富含无机物的界面层,并实现了令人印象深刻的99.6%的锂电镀/剥离库仑效率。制备的具有有限锂含量(N/P = 2.5)的Li||LiFePO全电池在150次循环后展现出83%的高容量保持率,表明其具有出色的循环稳定性。此外,完整的锂金属电池在-20°C至60°C的宽温度范围内表现出卓越的耐受性,在-20°C下110次循环后仍显示出90%的显著容量保持率。这种分子设计策略为超越氟化的电解质工程提供了一条有前景的途径,以培育高性能的锂金属电池。