Suppr超能文献

通过屏蔽剂调控对实用锂金属电池进行高度氟化电解质的重塑

Remodeling Highly Fluorinated Electrolyte via Shielding Agent Regulation toward Practical Lithium Metal Batteries.

作者信息

Yang Yutong, Ma Shunchao, Yin Hongxing, Li Yanan, Chen Silin, Zhang Yu, Li Dan, Dong Feilong, Zhang Yue, Xie Haiming, Cong Lina

机构信息

National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130022, China.

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, China.

出版信息

Adv Sci (Weinh). 2024 Dec;11(45):e2404248. doi: 10.1002/advs.202404248. Epub 2024 Oct 10.

Abstract

Highly fluorinated electrolytes have proved effective in improving electrochemical stability of lithium metal batteries. However, excessive fluorination not only detrimentally impacts the electrolyte ionic conductivity, but also inevitably forms the over-fluorinated interphases with sluggish ion diffusivity. Herein, a strategy on remodeling Li solvation structure in highly fluorinated electrolyte aided is proposed by fluorinated amide (FDMA), which denoted as "shielding agent". Benefitting from FDMA's high donor number (DN) value (22.1), the Li-dipole (fluoroethylene carbonate (FEC) or trans-4,5-Difluoroethylenecarbonate (DFEC)) interaction is interrupted and the participation of FDMA in primary solvation sheath fructify the solid-electrolyte interphase without scarifying the privilege of fluorinated electrolyte on interphase chemistry. Eventually, the optimal high-fluorinated electrolyte (FDMA/DFEC + 1.0 mol L LiTFSI) with this unique shielding effect displays high ionic conductivity and rapid Li desolvation behavior, enabling Li||LiNiCoMnO (Li||NCM622) to achieve an ultralong cycle-life of 2000 cycles at 1C with 84.7% capacity retention. Even under extreme conditions (NCM622: 10 mg cm; electrolyte: 20 µL; Li: 50 µm), the Li||NCM622 displays excellent electrochemical performance. Additionally, 447 Wh kg Li||LiNiCoMnO (Li||NCM811) pouch cells have been successfully fabricated and demonstrate an exceptional cycle-life over 150 cycles. The proposed "shielding" strategy to modulate the solvation structure paves the way for developing practical LMBs with fluorinated electrolytes.

摘要

高度氟化的电解质已被证明在提高锂金属电池的电化学稳定性方面是有效的。然而,过度氟化不仅会对电解质的离子电导率产生不利影响,还不可避免地会形成离子扩散缓慢的过度氟化界面。在此,提出了一种通过氟化酰胺(FDMA)辅助重塑高度氟化电解质中锂溶剂化结构的策略,FDMA被称为“屏蔽剂”。受益于FDMA的高给体数(DN)值(22.1),锂-偶极子(氟代碳酸亚乙酯(FEC)或反式-4,5-二氟碳酸亚乙酯(DFEC))相互作用被中断,并且FDMA参与初级溶剂化鞘层使固体电解质界面得以形成,而不会损害氟化电解质在界面化学方面的优势。最终,具有这种独特屏蔽效应的最佳高度氟化电解质(FDMA/DFEC + 1.0 mol L LiTFSI)表现出高离子电导率和快速的锂去溶剂化行为,使锂||锂镍钴锰氧化物(锂||NCM622)在1C下能够实现2000次循环的超长循环寿命,容量保持率为84.7%。即使在极端条件下(NCM622:10 mg cm;电解质:20 µL;锂:50 µm),锂||NCM622仍表现出优异的电化学性能。此外,已成功制造出447 Wh kg的锂||锂镍钴锰氧化物(锂||NCM811)软包电池,并展示出超过150次循环的优异循环寿命。所提出的调节溶剂化结构的“屏蔽”策略为开发实用的含氟化电解质的锂金属电池铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b01f/11615804/b89a967f3fc9/ADVS-11-2404248-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验