Suppr超能文献

在低艾滋病毒流行率环境下,使用成人鼻咽拭子PCR诊断耶氏肺孢子菌肺炎的监督式机器学习多变量预测模型的开发与验证

Development and validation of supervised machine learning multivariable prediction models for the diagnosis of Pneumocystis jirovecii pneumonia using nasopharyngeal swab PCR in adults in a low-HIV prevalence setting.

作者信息

Chew Rusheng, Woods Marion L, Paterson David L

机构信息

Mathematical and Economic Modelling Department, Mahidol Oxford Tropical Medicine Research Unit, c/o Faculty of Tropical Medicine, Mahidol University, 3rd floor, 60th Anniversary Chalermprakiat Building, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.

Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX3 7LG, UK.

出版信息

Int Health. 2025 Sep 3;17(5):804-808. doi: 10.1093/inthealth/ihae052.

Abstract

BACKGROUND

The global burden of the opportunistic fungal disease Pneumocystis jirovecii pneumonia (PJP) remains substantial. Polymerase chain reaction (PCR) on nasopharyngeal swabs (NPS) has high specificity and may be a viable alternative to the gold standard diagnostic of PCR on invasively collected lower respiratory tract specimens, but has low sensitivity. Sensitivity may be improved by incorporating NPS PCR results into machine learning models.

METHODS

Three supervised multivariable diagnostic models (random forest, logistic regression and extreme gradient boosting) were constructed and validated using a 111-person Australian dataset. The predictors were age, gender, immunosuppression type and NPS PCR result. Model performance metrics such as accuracy, sensitivity, specificity and predictive values were compared to select the best-performing model.

RESULTS

The logistic regression model performed best, with 80% accuracy, improving sensitivity to 86% and maintaining acceptable specificity of 70%. Using this model, positive and negative NPS PCR results indicated post-test probabilities of 84% (likely PJP) and 26% (unlikely PJP), respectively.

CONCLUSIONS

The logistic regression model should be externally validated in a wider range of settings. As the predictors are simple, routinely collected patient variables, this model may represent a diagnostic advance suitable for settings where collection of lower respiratory tract specimens is difficult but PCR is available.

摘要

背景

机会性真菌疾病耶氏肺孢子菌肺炎(PJP)的全球负担依然沉重。对鼻咽拭子(NPS)进行聚合酶链反应(PCR)具有高特异性,可能是侵入性采集的下呼吸道标本PCR金标准诊断的可行替代方法,但灵敏度较低。将NPS PCR结果纳入机器学习模型可能会提高灵敏度。

方法

使用一个111人的澳大利亚数据集构建并验证了三种监督多变量诊断模型(随机森林、逻辑回归和极端梯度提升)。预测因素包括年龄、性别、免疫抑制类型和NPS PCR结果。比较模型性能指标,如准确性、灵敏度、特异性和预测值,以选择性能最佳的模型。

结果

逻辑回归模型表现最佳,准确率为80%,灵敏度提高到86%,特异性保持在可接受的70%。使用该模型,NPS PCR结果为阳性和阴性时,检测后概率分别为84%(可能为PJP)和26%(不太可能为PJP)。

结论

逻辑回归模型应在更广泛的环境中进行外部验证。由于预测因素是简单的、常规收集的患者变量,该模型可能代表了一种诊断进展,适用于难以采集下呼吸道标本但可进行PCR检测的环境。

相似文献

4
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
5
Diagnostic tests performance in detecting Pneumocystis jirovecii: A systematic review and meta-analysis.
Eur J Clin Microbiol Infect Dis. 2025 Apr;44(4):789-805. doi: 10.1007/s10096-025-05051-6. Epub 2025 Feb 3.
6
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780.
7
Computed tomography-based radiomics prediction model for differentiating invasive pulmonary aspergillosis and pneumonia.
Front Cell Infect Microbiol. 2025 Jul 10;15:1552556. doi: 10.3389/fcimb.2025.1552556. eCollection 2025.

本文引用的文献

1
Comparing Polymerase Chain Reaction Testing of Nasopharyngeal Swab and Lower Respiratory Tract Specimens for the Diagnosis of Pneumonia.
Open Forum Infect Dis. 2024 Feb 2;11(3):ofae071. doi: 10.1093/ofid/ofae071. eCollection 2024 Mar.
2
Epidemiology, Clinical Characteristics, and Diagnostic Testing Practices for Pneumonia-Associated Hospitalizations, United States, 2019-2022.
Open Forum Infect Dis. 2024 Jan 31;11(2):ofae054. doi: 10.1093/ofid/ofae054. eCollection 2024 Feb.
3
A machine learning diagnostic model for Pneumocystis jirovecii pneumonia in patients with severe pneumonia.
Intern Emerg Med. 2023 Sep;18(6):1741-1749. doi: 10.1007/s11739-023-03353-1. Epub 2023 Aug 2.
4
Diagnosing Pneumocystis jirovecii pneumonia: A review of current methods and novel approaches.
Med Mycol. 2020 Nov 10;58(8):1015-1028. doi: 10.1093/mmy/myaa024.
5
pneumonia in the twenty-first century: HIV-infected versus HIV-uninfected patients.
Expert Rev Anti Infect Ther. 2019 Oct;17(10):787-801. doi: 10.1080/14787210.2019.1671823. Epub 2019 Oct 4.
6
Pneumocystis jirovecii--from a commensal to pathogen: clinical and diagnostic review.
Parasitol Res. 2015 Oct;114(10):3577-85. doi: 10.1007/s00436-015-4678-6. Epub 2015 Aug 19.
8
British Thoracic Society guideline for diagnostic flexible bronchoscopy in adults: accredited by NICE.
Thorax. 2013 Aug;68 Suppl 1:i1-i44. doi: 10.1136/thoraxjnl-2013-203618.
9
Principles for high-quality, high-value testing.
Evid Based Med. 2013 Feb;18(1):5-10. doi: 10.1136/eb-2012-100645. Epub 2012 Jun 27.
10
Assessing the performance of prediction models: a framework for traditional and novel measures.
Epidemiology. 2010 Jan;21(1):128-38. doi: 10.1097/EDE.0b013e3181c30fb2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验