Suppr超能文献

用于高极化损耗MOF-LDH-MXene吸收体的柯肯德尔效应诱导三元异质界面工程

Kirkendall Effect-Induced Ternary Heterointerfaces Engineering for High Polarization Loss MOF-LDH-MXene Absorbers.

作者信息

Sun Chunhua, Lan Di, Jia Zirui, Gao Zhenguo, Wu Guanglei

机构信息

School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China.

Institute of Materials for Energy and Environment, State Key Laboratory Breeding Base of New Fiber Materials and Modern Textile, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.

出版信息

Small. 2024 Nov;20(48):e2405874. doi: 10.1002/smll.202405874. Epub 2024 Aug 29.

Abstract

Heterogeneous interfacial engineering has garnered widespread attention for optimizing polarization loss and enhancing the performance of electromagnetic wave absorption. A novel Kirkendall effect-assisted electrostatic self-assembly method is employed to construct a metal-organic framework (MOF, MIL-88A) decorated with Ni-Fe layered double hydroxide (LDH), forming a multilayer nano-cage coated with TiCT. By modulating the surface adsorption of TiCT on LDH, the heterointerfaces in MOF-LDH-MXene ternary composites exhibit excellent interfacial polarization loss. Additionally, the Ni-Fe LDH@TiCT nano-cage exhibits a large specific surface area, abundant defects, and a large number of heterojunction structures, resulting in excellent electromagnetic wave absorption performance. The MIL-88A@Ni-Fe LDH@TiCT-1.0 nano-cage achieves a reflection loss value of -46.7 dB at a thickness of 1.4 mm and an effective absorption bandwidth of 5.12 GHz at a thickness of 1.8 mm. The heterojunction interface composed of Ni-Fe LDH and TiCT helps to enhance polarization loss. Additionally, TiCT forms a conductive network on the surface, while the cavity between the MIL-88A core and the Ni-Fe LDH shell facilitates multiple attenuations by increasing the transmission path of internal incident waves. This work may reveal a new structural design of multi-component composites by heterointerfaces engineering for electromagnetic wave absorption.

摘要

异质界面工程在优化极化损耗和提高电磁波吸收性能方面受到了广泛关注。采用一种新颖的柯肯达尔效应辅助静电自组装方法构建了一种装饰有镍铁层状双氢氧化物(LDH)的金属有机框架(MOF,MIL-88A),形成了一种涂覆有TiCT的多层纳米笼。通过调节TiCT在LDH上的表面吸附,MOF-LDH-MXene三元复合材料中的异质界面表现出优异的界面极化损耗。此外,Ni-Fe LDH@TiCT纳米笼具有较大的比表面积、丰富的缺陷和大量的异质结结构,从而具有优异的电磁波吸收性能。MIL-88A@Ni-Fe LDH@TiCT-1.0纳米笼在厚度为1.4毫米时实现了-46.7 dB的反射损耗值,在厚度为1.8毫米时有效吸收带宽为5.12 GHz。由Ni-Fe LDH和TiCT组成的异质结界面有助于增强极化损耗。此外,TiCT在表面形成导电网络,而MIL-88A核与Ni-Fe LDH壳之间的空腔通过增加内部入射波的传输路径促进多次衰减。这项工作可能通过异质界面工程揭示一种用于电磁波吸收的多组分复合材料的新结构设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验