Suppr超能文献

缺失连接体缺陷功能化金属有机框架加速超稳定全固态锌金属电池的锌离子传导

Missing-Linker Defect Functionalized Metal-Organic Frameworks Accelerating Zinc Ion Conduction for Ultrastable All-Solid-State Zinc Metal Batteries.

作者信息

Hui Xiaobin, Zhan Zhen, Zhang Zeyu, Yu Jingya, Jiang Pengyan, Dang Zhengzheng, Wang Jian, Cai Songhua, Wang Yanming, Xu Zheng-Long

机构信息

Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR 999077, China.

State Key Laboratory of Ultra-precision Machining Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR 999077, China.

出版信息

ACS Nano. 2024 Sep 10;18(36):25237-25248. doi: 10.1021/acsnano.4c07907. Epub 2024 Aug 29.

Abstract

Solid-state polymer electrolytes (SPEs) are promising for high-performance zinc metal batteries (ZMBs), but they encounter critical challenges of low ionic conductivity, limited Zn transference number (), and an unstable electrolyte-electrode interface. Here, we present an effective approach involving a missing-linker metallic organic framework (MOF)-catalyzed poly(ethylene glycol) diacrylate (PEGDA)/polyacrylamide (PAM) copolymer SPE for single Zn conduction and seamless electrolyte-electrode contact. The single-Zn conduction is facilitated by the anchoring of the OTF anions onto the unsaturated metal sites of missing-linker MOF, while the PEGDA and PAM chains in competitive coordination with Zn ions promote rapid Zn ion transport. Our all-solid-state electrolyte simultaneously achieves a superior ionic conductivity of 1.52 mS cm and a high of 0.83 at room temperature, alongside uniform Zn metal deposition (1000 cycles in symmetric cells) and high Zn plating/striping efficiencies (>99% after 600 cycles in asymmetric cells). Applications of our SPE in Zn//VO full cells are further demonstrated with a long lifespan of 2000 cycles and an extremely low-capacity degradation rate of 0.012% per cycle. This work provides an effective strategy for using a missing-linker MOF to catalyze competitively coordinating copolymers for accelerating Zn ion conduction, assisting the future design of all-solid-state ZMBs.

摘要

固态聚合物电解质(SPEs)在高性能锌金属电池(ZMBs)方面具有广阔前景,但它们面临着离子电导率低、锌迁移数()有限以及电解质-电极界面不稳定等关键挑战。在此,我们提出了一种有效的方法,涉及一种缺联剂金属有机框架(MOF)催化的聚乙二醇二丙烯酸酯(PEGDA)/聚丙烯酰胺(PAM)共聚物SPE,用于单一锌传导和无缝电解质-电极接触。通过将OTF阴离子锚定在缺联剂MOF的不饱和金属位点上促进单一锌传导,而与锌离子竞争配位的PEGDA和PAM链促进锌离子快速传输。我们的全固态电解质在室温下同时实现了1.52 mS cm的优异离子电导率和0.83的高 ,以及均匀的锌金属沉积(对称电池中1000次循环)和高的锌电镀/脱镀效率(非对称电池中600次循环后>99%)。我们的SPE在Zn//VO全电池中的应用进一步得到证明,其具有2000次循环的长寿命和极低的每循环0.012%的容量降解率。这项工作为使用缺联剂MOF催化竞争性配位共聚物以加速锌离子传导提供了一种有效策略,有助于全固态ZMBs的未来设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验