Suppr超能文献

通过几何设计实现的极性金属。

Polar metals by geometric design.

机构信息

Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

Nature. 2016 May 5;533(7601):68-72. doi: 10.1038/nature17628. Epub 2016 Apr 20.

Abstract

Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals--it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedral--the structural signatures of perovskites--owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.

摘要

高斯定律规定,在静电平衡中的导体内部的有效电荷屏蔽使净电场为零;金属内部的自由载流子消除了由于不对称电荷分布可能产生的内部偶极子。量子物理学支持这一观点,证明了离域电子产生静态宏观极化,这在金属中是一个定义不明确的量——由于协同原子位移与绝缘相中的偶极相互作用一致而呈现长程有序偶极子的极性金属极为罕见。在这里,我们描述了使用基于原子尺度控制保持反转(中心)位移的策略,在薄膜 ANiO3 钙钛矿镍酸盐中设计和实验实现室温极性金属。我们通过从头算计算预测,协同极性 A 阳离子位移由于角连接 NiO6 八面体(钙钛矿的结构特征)的非平衡幅度和倾斜模式而在几何上得到稳定,这是由于底层衬底施加的几何约束。在 LaAlO3(111)衬底上外延生长的异质外延薄膜满足设计原则。我们实现了在组成相同的薄膜在(001)衬底上生长时无法获得的导电极性单斜氧化物,并且在薄膜几何形状中观察到隐藏的、以前未报道的非平衡结构。我们预计,几何稳定化方法将为实现具有不寻常共存性质的新型多功能材料提供新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验