Suppr超能文献

理解 3,7-二羟基色酮在 spp. 中的生物合成、代谢调控和抗植物病原体活性。

Understanding the biosynthesis, metabolic regulation, and anti-phytopathogen activity of 3,7-dihydroxytropolone in spp.

机构信息

Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom.

Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.

出版信息

mBio. 2024 Oct 16;15(10):e0102224. doi: 10.1128/mbio.01022-24. Epub 2024 Aug 29.

Abstract

The genus is a prolific source of specialized metabolites with significant biological activities, including siderophores, antibiotics, and plant hormones. These molecules play pivotal roles in environmental interactions, influencing pathogenicity, inhibiting microorganisms, responding to nutrient limitation and abiotic challenges, and regulating plant growth. These properties mean that pseudomonads are suitable candidates as biological control agents against plant pathogens. Multiple transposon-based screens have identified a biosynthetic gene cluster (BGC) associated with potent antibacterial and antifungal activities, which produces 7-hydroxytropolone (7-HT). In this study, we show that this BGC also makes 3,7-dihydroxytropolone (3,7-dHT), which has strong antimicrobial activity toward , a potato pathogen. Through metabolomics and reporter assays, we unveil the involvement of cluster-situated genes in generating phenylacetyl-coenzyme A, a key precursor for tropolone biosynthesis via the phenylacetic acid catabolon. The clustering of these phenylacetic acid genes within tropolone BGCs is unusual in other Gram-negative bacteria. Our findings support the interception of phenylacetic acid catabolism via an enoyl-CoA dehydratase encoded in the BGC, as well as highlighting an essential role for a conserved thioesterase in biosynthesis. Biochemical assays were used to show that this thioesterase functions after a dehydrogenation-epoxidation step catalyzed by a flavoprotein. We use this information to identify diverse uncharacterized BGCs that encode proteins with homology to flavoproteins and thioesterases involved in tropolone biosynthesis. This study provides insights into tropolone biosynthesis in , laying the foundation for further investigations into the ecological role of tropolone production.IMPORTANCE bacteria produce various potent chemicals that influence interactions in nature, such as metal-binding molecules, antibiotics, or plant hormones. This ability to synthesize bioactive molecules means that bacteria may be useful as biological control agents to protect plants from agricultural pathogens, as well as a source of antibiotic candidates. We have identified a plant-associated strain that can produce 3,7-dihydroxytropolone, which has broad biological activity and can inhibit the growth of , a bacterium that causes potato scab. Following the identification of this molecule, we used a combination of genetic, chemical, and biochemical experiments to identify key steps in the production of tropolones in species. Understanding this biosynthetic process led to the discovery of an array of diverse pathways that we predict will produce new tropolone-like molecules. This work should also help us shed light on the natural function of antibiotics in nature.

摘要

属是具有重要生物活性的特殊代谢物的丰富来源,包括铁载体、抗生素和植物激素。这些分子在环境相互作用中发挥着关键作用,影响致病性、抑制微生物、响应营养限制和非生物挑战以及调节植物生长。这些特性意味着假单胞菌是防治植物病原体的生物防治剂的合适候选物。基于转座子的多种筛选已经确定了一个与强大的抗菌和抗真菌活性相关的生物合成基因簇 (BGC),该基因簇产生 7-羟基色酮 (7-HT)。在这项研究中,我们表明这个 BGC 还产生 3,7-二羟基色酮 (3,7-dHT),它对马铃薯病原体有很强的抗菌活性。通过代谢组学和报告基因分析,我们揭示了簇定位基因参与生成苯乙酰辅酶 A 的情况,苯乙酰辅酶 A 是通过苯乙酸分解代谢物途径生成色酮的关键前体。在其他革兰氏阴性细菌中,这些苯乙酸基因在色酮 BGC 中的聚类是不寻常的。我们的研究结果支持通过 BGC 中编码的烯酰辅酶 A 脱水酶拦截苯乙酸代谢,以及突出保守硫酯酶在生物合成中的重要作用。生化分析用于表明该硫酯酶在黄素蛋白催化的脱氢-环氧化步骤之后起作用。我们利用这些信息来识别不同的未表征 BGC,这些 BGC 编码与色酮生物合成相关的黄素蛋白和硫酯酶具有同源性的蛋白质。这项研究提供了对属中色酮生物合成的见解,为进一步研究色酮产生的生态作用奠定了基础。

重要性

细菌产生各种影响自然相互作用的强效化学物质,例如金属结合分子、抗生素或植物激素。这种合成生物活性分子的能力意味着细菌可能可用作生物防治剂来保护植物免受农业病原体的侵害,并且是抗生素候选物的来源。我们已经确定了一种与植物相关的 菌株,它可以产生 3,7-二羟基色酮,该物质具有广泛的生物活性,可抑制引起马铃薯疮痂病的 的生长。在鉴定出这种分子后,我们使用遗传、化学和生化实验的组合来鉴定 物种中色酮生产的关键步骤。了解这个生物合成过程导致发现了一系列我们预测将产生新的色酮样分子的不同途径。这项工作还应该有助于我们了解抗生素在自然界中的自然功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验