Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
J Phys Chem B. 2024 Sep 12;128(36):8737-8752. doi: 10.1021/acs.jpcb.4c03276. Epub 2024 Aug 29.
Antimicrobial peptides (AMPs) are attractive materials for combating the antimicrobial resistance crisis because they can kill target microbes by directly disrupting cell membranes. Although thousands of AMPs have been discovered, their molecular mechanisms of action are still poorly understood. One broad mechanism for membrane disruption is the formation of membrane-spanning hydrophilic pores which can be stabilized by AMPs. In this study, we use molecular dynamics simulations to investigate the thermodynamics of pore formation in model single-component lipid membranes in the presence of one of three AMPs: aurein 1.2, melittin and magainin 2. To overcome the general challenge of modeling long time scale membrane-related behaviors, including AMP binding, clustering, and pore formation, we develop a generalizable methodology for sampling AMP-induced pore formation. This approach involves the long equilibration of peptides around a pore created with a nucleation collective variable by performing coarse-grained simulations, then backmapping equilibrated AMP-membrane configurations to all-atom resolution. We then perform all-atom simulations to resolve free energy profiles for pore formation while accurately modeling the interplay of lipid-peptide-solvent interactions that dictate pore formation free energies. Using this approach, we quantify free energy barriers for pore formation without direct biases on peptides or whole lipids, allowing us to investigate mechanisms of pore formation for these 3 AMPs that are a consequence of unbiased peptide diffusion and clustering. Further analysis of simulation trajectories then relates variations in pore lining by AMPs, AMP-induced lipid disruptions, and salt bridges between AMPs to the observed pore formation free energies and corresponding mechanisms. This methodology and mechanistic analysis have the potential to generalize beyond the AMPs in this study to improve our understanding of pore formation by AMPs and related antimicrobial materials.
抗菌肽(AMPs)是应对抗菌耐药性危机的有吸引力的材料,因为它们可以通过直接破坏细胞膜来杀死目标微生物。尽管已经发现了数千种 AMP,但它们的作用机制仍知之甚少。破坏细胞膜的一种广泛机制是形成跨膜亲水头,亲水头可以被 AMP 稳定。在这项研究中,我们使用分子动力学模拟研究了在存在三种 AMP 之一的情况下,模型单组分脂质膜中孔形成的热力学:aurein 1.2、melittin 和 magainin 2。为了克服建模与膜相关的长时间尺度行为的一般挑战,包括 AMP 结合、聚集和孔形成,我们开发了一种可推广的方法来采样 AMP 诱导的孔形成。这种方法涉及在由成核集体变量创建的孔周围长时间平衡肽,然后通过粗粒化模拟将平衡的 AMP-膜构型回溯映射到全原子分辨率。然后,我们进行全原子模拟以解析形成孔的自由能曲线,同时准确地模拟决定孔形成自由能的脂质-肽-溶剂相互作用的相互作用。使用这种方法,我们可以在不直接偏向于肽或整个脂质的情况下量化孔形成的自由能障碍,从而研究这 3 种 AMP 的孔形成机制,这些机制是由于无偏肽扩散和聚集的结果。然后进一步分析模拟轨迹,将 AMP 对孔衬里的变化、AMP 诱导的脂质破坏以及 AMP 之间的盐桥与观察到的孔形成自由能和相应机制联系起来。这种方法和机制分析有可能超越本研究中的 AMP,以提高我们对抗菌肽和相关抗菌材料形成孔的理解。