Suppr超能文献

抗菌肽与膜孔的结合更为紧密。

Antimicrobial peptides bind more strongly to membrane pores.

作者信息

Mihajlovic Maja, Lazaridis Themis

机构信息

Department of Chemistry, The City College of New York, New York, NY 10031, USA.

出版信息

Biochim Biophys Acta. 2010 Aug;1798(8):1494-502. doi: 10.1016/j.bbamem.2010.02.023. Epub 2010 Feb 24.

Abstract

Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize bacterial membranes. Understanding their mechanism of action might help design better antibiotics. Using an implicit membrane model, modified to include pores of different shapes, we show that four AMPs (alamethicin, melittin, a magainin analogue, MG-H2, and piscidin 1) bind more strongly to membrane pores, consistent with the idea that they stabilize them. The effective energy of alamethicin in cylindrical pores is similar to that in toroidal pores, whereas the effective energy of the other three peptides is lower in toroidal pores. Only alamethicin intercalates into the membrane core; MG-H2, melittin and piscidin are located exclusively at the hydrophobic/hydrophilic interface. In toroidal pores, the latter three peptides often bind at the edge of the pore, and are in an oblique orientation. The calculated binding energies of the peptides are correlated with their hemolytic activities. We hypothesize that one distinguishing feature of AMPs may be the fact that they are imperfectly amphipathic which allows them to bind more strongly to toroidal pores. An initial test on a melittin-based mutant seems to support this hypothesis.

摘要

抗菌肽(AMPs)是一种通常呈阳离子性的小肽,可使细菌细胞膜通透性增加。了解其作用机制可能有助于设计出更好的抗生素。我们使用一种经过修改以包含不同形状孔道的隐式膜模型,发现四种抗菌肽(阿拉霉素、蜂毒肽、一种蛙皮素类似物MG-H2和杀鱼菌素1)与膜孔的结合更强,这与它们能稳定膜孔的观点一致。阿拉霉素在圆柱形孔道中的有效能量与在环形孔道中的相似,而其他三种肽在环形孔道中的有效能量较低。只有阿拉霉素能插入膜核心;MG-H2、蜂毒肽和杀鱼菌素仅位于疏水/亲水界面。在环形孔道中,后三种肽通常在孔边缘结合,且呈倾斜方向。计算得出的肽的结合能与其溶血活性相关。我们推测抗菌肽的一个显著特征可能是它们并非完美的两亲性,这使得它们能更强烈地结合到环形孔道上。对一种基于蜂毒肽的突变体的初步测试似乎支持了这一假设。

相似文献

1
Antimicrobial peptides bind more strongly to membrane pores.
Biochim Biophys Acta. 2010 Aug;1798(8):1494-502. doi: 10.1016/j.bbamem.2010.02.023. Epub 2010 Feb 24.
2
Antimicrobial peptides in toroidal and cylindrical pores.
Biochim Biophys Acta. 2010 Aug;1798(8):1485-93. doi: 10.1016/j.bbamem.2010.04.004. Epub 2010 Apr 18.
3
Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides.
Biochim Biophys Acta. 2012 May;1818(5):1274-83. doi: 10.1016/j.bbamem.2012.01.016. Epub 2012 Jan 25.
4
Free Energy Analysis of Peptide-Induced Pore Formation in Lipid Membranes by Bridging Atomistic and Coarse-Grained Simulations.
J Phys Chem B. 2024 Sep 12;128(36):8737-8752. doi: 10.1021/acs.jpcb.4c03276. Epub 2024 Aug 29.
5
Barrel-stave model or toroidal model? A case study on melittin pores.
Biophys J. 2001 Sep;81(3):1475-85. doi: 10.1016/S0006-3495(01)75802-X.
6
Modeling peptide binding to anionic membrane pores.
J Comput Chem. 2013 Jun 30;34(17):1463-75. doi: 10.1002/jcc.23282. Epub 2013 Apr 11.
7
Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants.
Colloids Surf B Biointerfaces. 2016 Jul 1;143:194-205. doi: 10.1016/j.colsurfb.2016.03.037. Epub 2016 Mar 16.

引用本文的文献

4
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
6
How Cell-Penetrating Peptides Behave Differently from Pore-Forming Peptides: Structure and Stability of Induced Transmembrane Pores.
J Am Chem Soc. 2023 Dec 6;145(48):26095-26105. doi: 10.1021/jacs.3c08014. Epub 2023 Nov 21.
7
Peptides Isolated from Amphibian Skin Secretions with Emphasis on Antimicrobial Peptides.
Toxins (Basel). 2022 Oct 21;14(10):722. doi: 10.3390/toxins14100722.
8
Antioxidant and Antimicrobial Peptides Derived from Food Proteins.
Molecules. 2022 Feb 16;27(4):1343. doi: 10.3390/molecules27041343.
9
What Makes a Good Pore Former: A Study of Synthetic Melittin Derivatives.
Biophys J. 2020 Apr 21;118(8):1901-1913. doi: 10.1016/j.bpj.2020.02.024. Epub 2020 Mar 3.
10
Hemoglobin Reassembly of Antimicrobial Fragments from the Midgut of .
Biomolecules. 2020 Feb 10;10(2):261. doi: 10.3390/biom10020261.

本文引用的文献

1
Structural Determinants of Transmembrane β-Barrels.
J Chem Theory Comput. 2005 Jul;1(4):716-22. doi: 10.1021/ct050055x.
2
Antimicrobial peptides in toroidal and cylindrical pores.
Biochim Biophys Acta. 2010 Aug;1798(8):1485-93. doi: 10.1016/j.bbamem.2010.04.004. Epub 2010 Apr 18.
4
Control of cell selectivity of antimicrobial peptides.
Biochim Biophys Acta. 2009 Aug;1788(8):1687-92. doi: 10.1016/j.bbamem.2008.09.013. Epub 2008 Oct 8.
5
Peptide aggregation and pore formation in a lipid bilayer: a combined coarse-grained and all atom molecular dynamics study.
Biophys J. 2008 Nov 1;95(9):4337-47. doi: 10.1529/biophysj.108.133330. Epub 2008 Aug 1.
6
Toroidal pores formed by antimicrobial peptides show significant disorder.
Biochim Biophys Acta. 2008 Oct;1778(10):2308-17. doi: 10.1016/j.bbamem.2008.06.007. Epub 2008 Jun 18.
7
Interaction of a magainin-PGLa hybrid peptide with membranes: insight into the mechanism of synergism.
Biochemistry. 2007 Dec 11;46(49):14284-90. doi: 10.1021/bi701850m. Epub 2007 Nov 16.
8
A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A.
Biophys J. 2008 Mar 1;94(5):1667-80. doi: 10.1529/biophysj.107.118760. Epub 2007 Oct 5.
9
Solution structure and cell selectivity of piscidin 1 and its analogues.
Biochemistry. 2007 Mar 27;46(12):3653-63. doi: 10.1021/bi062233u. Epub 2007 Mar 1.
10
Structure and mechanism of action of the antimicrobial peptide piscidin.
Biochemistry. 2007 Feb 20;46(7):1771-8. doi: 10.1021/bi0620297. Epub 2007 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验