Gros Hippolyte, Thibaut Jean-Pierre, Raynal Lucas, Sander Emmanuel
Centre de Recherche en Psychologie et Neurosciences, Aix-Marseille Universite.
Laboratoire de l'Etude de l'Apprentissage et du Developpement, Department of Psychology, Universite de Bourgogne.
J Exp Psychol Learn Mem Cogn. 2025 Apr;51(4):526-551. doi: 10.1037/xlm0001373. Epub 2024 Aug 29.
What can false memories tell us about the structure of mental representations of arithmetic word problems? The semantic congruence model describes the central role of world semantics in the encoding, recoding, and solving of these problems. We propose to use memory tasks to evaluate key predictions of the semantic congruence model regarding the representations constructed when solving arithmetic word problems. We designed isomorphic word problems differing only by the world semantics imbued in their problem statement. Half the problems featured quantities (durations, heights, elevator floors) promoting an ordinal encoding, and the other half used quantities (weights, prices, collections) promoting a cardinal encoding. Across three experiments, in French and in English, we used surprise memory tasks to investigate adults' mental representations when solving the problems. After the first solving task, the participants were given an unexpected task: either to recall the problems (Experiments 1 and 2) or to identify, from memory, the experimenter-induced changes in target problem sentences (Experiment 3). Crucially, all problems included a specific mathematical relationship that was not explicit in the problem statement and that could only be inferred from an ordinal encoding. We used the presence or absence of this relationship in the participants' responses to infer the structure of their representations. Converging results from all three experiments bring new evidence of the role of semantic congruence in arithmetic reasoning, new insights into the relevance of the cardinal-ordinal distinction in numerical cognition, and a new perspective on the use of memory tasks to investigate variations in the representations of mathematical word problems. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
错误记忆能让我们了解算术应用题心理表征的结构吗?语义一致性模型描述了世界语义在这些问题的编码、重新编码和解码过程中的核心作用。我们建议使用记忆任务来评估语义一致性模型关于解决算术应用题时构建的表征的关键预测。我们设计了同构应用题,它们仅在问题陈述中所蕴含的世界语义上有所不同。一半的问题涉及促进顺序编码的数量(持续时间、高度、电梯楼层),另一半使用促进基数编码的数量(重量、价格、集合)。在三个实验中,我们用法语和英语进行研究,使用意外记忆任务来探究成年人在解决问题时的心理表征。在第一个解决任务之后,参与者会接到一个意想不到的任务:要么回忆问题(实验1和2),要么从记忆中识别实验者对目标问题句子所做的改变(实验3)。至关重要的是,所有问题都包含一种特定的数学关系,这种关系在问题陈述中并不明确,只能从顺序编码中推断出来。我们根据参与者回答中这种关系的有无来推断他们表征的结构。所有三个实验的趋同结果为语义一致性在算术推理中的作用带来了新证据,为基数 - 序数区分在数字认知中的相关性提供了新见解,并为使用记忆任务来研究数学应用题表征的变化提供了新视角。(PsycInfo数据库记录(c)2025美国心理学会,保留所有权利)