Chen Yawei, Huang Fanyang, Xie Miao, Han Yehu, Li Wanxia, Jie Yulin, Zhu Xingbao, Cheng Tao, Cao Ruiguo, Jiao Shuhong
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China.
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47581-47589. doi: 10.1021/acsami.4c09083. Epub 2024 Aug 29.
High-voltage Li metal batteries (LMBs) based on ether electrolytes hold potential for achieving high energy densities exceeding 500 Wh kg, but face challenges with electrolyte oxidative stability, particularly concerning aluminum (Al) current collector corrosion. However, the specific chemistry behind Al corrosion and its effect on electrolyte components remains unexplored. Here, our study delves into Al corrosion in the representative LiFSI-DME electrolyte system, revealing that low-concentration electrolytes exacerbate Al current collector corrosion and solvent decomposition. In contrast, high-concentration electrolytes mitigate these issues, enhancing long-term stability. Remarkably, LiFSI-0.7DME electrolyte demonstrates exceptional stability with up to 1000 cycles at high voltage without significant capacity decay. These findings offer crucial insights into Al corrosion mechanisms in ether-based electrolytes, advancing our comprehension of high-voltage LMBs and facilitating their development for practical applications.
基于醚类电解质的高压锂金属电池(LMBs)有望实现超过500 Wh/kg的高能量密度,但面临电解质氧化稳定性方面的挑战,尤其是铝(Al)集流体腐蚀问题。然而,Al腐蚀背后的具体化学过程及其对电解质成分的影响仍未得到探索。在此,我们的研究深入探讨了代表性的LiFSI-DME电解质体系中的Al腐蚀,发现低浓度电解质会加剧Al集流体腐蚀和溶剂分解。相比之下,高浓度电解质可缓解这些问题,提高长期稳定性。值得注意的是,LiFSI-0.7DME电解质表现出卓越的稳定性,在高压下可循环多达1000次而无明显容量衰减。这些发现为醚基电解质中的Al腐蚀机制提供了关键见解,增进了我们对高压LMBs的理解,并推动其在实际应用中的发展。