Cho Hannah, Jung Jinkwan, Kim Ilju, Kim Jinuk, Kim Sejin, Hyun Jonghyun, Lee Chang Hoon, Kwack Hobeom, Oh Wonsik, Lee Jinwoo, Kim Hee-Tak
Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-gu, Daejeon, Republic of Korea.
LG Energy solution, LG Science park E6 Block, Gangseo-gu, Seoul, Republic of Korea.
Nat Commun. 2025 Jul 24;16(1):6805. doi: 10.1038/s41467-025-62169-z.
Realizing practical lithium-sulfur batteries with high energy density requires lean electrolyte design. However, under low electrolyte/sulfur (E/S) ratios, highly concentrated lithium polysulfides in the electrolyte phase limit cycling and capacity. Here, we report that a small amount of Lewis acidic calcium cation in the electrolyte addresses the problems of lean electrolyte lithium-sulfur batteries. Because of its Lewis acidity, Ca readily converts lithium polysulfides into CaS and S, preventing electrolyte jamming, polysulfide shuttle and Li corrosion. The in situ-formed CaS catalyzes the reduction reaction of lithium polysulfides. Ca rejuvenates via electrochemical oxidation of CaS during charging, enabling a sustainable interconversion between Ca and CaS during cycling. Li-S pouch cells with Ca additive delivered an energy density of 493 Wh kg (E/S of 2.4 μL mg) based on the total mass of the cell excluding external packaging, with 70% capacity retention at 220 cycle under 1 mA cm discharge, and 346 Wh kg (2.9 μL mg) with 77% capacity retention at 360 cycle under 1.0 C 2 mA cm discharge. The judicious integration of lithium-sulfur and calcium-sulfur chemistries offers a handy but effective approach to overcome the long-lasting trade-off between energy density and cycling stability in the development of lithium-sulfur batteries.
实现具有高能量密度的实用锂硫电池需要优化电解质设计。然而,在低电解质/硫(E/S)比下,电解质相中高浓度的多硫化锂会限制电池的循环性能和容量。在此,我们报道了电解质中少量的路易斯酸性钙阳离子解决了贫电解质锂硫电池的问题。由于其路易斯酸性,钙易于将多硫化锂转化为硫化钙和硫,从而防止电解质堵塞、多硫化物穿梭和锂腐蚀。原位形成的硫化钙催化多硫化锂的还原反应。在充电过程中,钙通过硫化钙的电化学氧化得以再生,从而在循环过程中实现钙和硫化钙之间的可持续相互转化。基于不包括外部包装的电池总质量,添加钙添加剂的锂硫软包电池在1 mA cm²放电电流下220次循环后容量保持率为70%,能量密度为493 Wh kg⁻¹(E/S为2.4 μL mg⁻¹);在1.0 C(2 mA cm²)放电电流下360次循环后容量保持率为77%,能量密度为346 Wh kg⁻¹(2.9 μL mg⁻¹)。锂硫化学和钙硫化学的明智结合为克服锂硫电池发展中能量密度和循环稳定性之间长期存在的权衡提供了一种简便而有效的方法。