Suppr超能文献

深度学习预测侧颅底脑脊髓液漏或脑膨出的风险。

Deep learning to predict risk of lateral skull base cerebrospinal fluid leak or encephalocele.

机构信息

Department of Otolaryngology, Head and Neck Surgery, University of Nebraska Medical Center, 981225 Nebraska Medical Center, Omaha, NE, 68198-1225, USA.

Department of Neurosurgery, University of Nebraska Medical Center, 988437 Nebraska Medical Center, Omaha, NE, 68198-8437, USA.

出版信息

Int J Comput Assist Radiol Surg. 2024 Dec;19(12):2453-2461. doi: 10.1007/s11548-024-03259-z. Epub 2024 Aug 29.

Abstract

PURPOSE

Skull base features, including increased foramen ovale (FO) cross-sectional area, are associated with lateral skull base spontaneous cerebrospinal fluid (sCSF) leak and encephalocele. Manual measurement requires skill in interpreting imaging studies and is time consuming. The goal of this study was to develop a fully automated deep learning method for FO segmentation and to determine the predictive value in identifying patients with sCSF leak or encephalocele.

METHODS

A retrospective cohort study at a tertiary care academic hospital of 34 adults with lateral skull base sCSF leak or encephalocele were compared with 815 control patients from 2013-2021. A convolutional neural network (CNN) was constructed for image segmentation of axial computed tomography (CT) studies. Predicted FO segmentations were compared to manual segmentations, and receiver operating characteristic (ROC) curves were constructed.

RESULTS

295 CTs were used for training and validation of the CNN. A separate dataset of 554 control CTs was matched 5:1 on age and sex with the sCSF leak/encephalocele group. The mean Dice score was 0.81. The sCSF leak/encephalocele group had greater mean (SD) FO cross-sectional area compared to the control group, 29.0 (7.7) mm versus 24.3 (7.6) mm (P = .002, 95% confidence interval 0.02-0.08). The area under the ROC curve was 0.69.

CONCLUSION

CNNs can be used to segment the cross-sectional area of the FO accurately and efficiently. Used together with other predictors, this method could be used as part of a clinical tool to predict the risk of sCSF leak or encephalocele.

摘要

目的

颅底特征,包括增大的卵圆孔(FO)横截面积,与外侧颅底自发性脑脊液(sCSF)漏和脑膨出有关。手动测量需要具备解读影像学研究的技能,并且耗时。本研究的目的是开发一种用于 FO 分割的完全自动化深度学习方法,并确定其在识别 sCSF 漏或脑膨出患者中的预测价值。

方法

在一家三级护理学术医院对 34 例外侧颅底 sCSF 漏或脑膨出的成年人进行回顾性队列研究,并与 2013 年至 2021 年的 815 例对照患者进行比较。构建了一个用于轴向计算机断层扫描(CT)研究图像分割的卷积神经网络(CNN)。将预测的 FO 分割与手动分割进行比较,并构建了接收者操作特征(ROC)曲线。

结果

使用 295 个 CT 对 CNN 进行训练和验证。使用与 sCSF 漏/脑膨出组年龄和性别匹配的 5:1 的 554 个对照 CT 数据集进行了独立数据集测试。平均 Dice 评分 0.81。与对照组相比,sCSF 漏/脑膨出组 FO 的横截面积更大,平均值(标准差)为 29.0(7.7)mm 比 24.3(7.6)mm(P=0.002,95%置信区间 0.02-0.08)。ROC 曲线下面积为 0.69。

结论

CNN 可用于准确、高效地分割 FO 的横截面积。与其他预测因子一起使用,这种方法可用于作为预测 sCSF 漏或脑膨出风险的临床工具的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验