Suppr超能文献

利用人工智能增强的基于网络的应用程序对胆管刷检细胞学标本进行评估:一项试点研究。

Utilization of an artificial intelligence-enhanced, web-based application to review bile duct brushing cytologic specimens: A pilot study.

作者信息

Marya Neil B, Powers Patrick D, Bois Melanie C, Hartley Christopher, Kerr Sarah E, Thangaiah Judith Jebastin, Norton Daniel, Abu Dayyeh Barham K, Cantley Richard, Chandrasekhara Vinay, Gores Gregory, Gleeson Ferga C, Law Ryan J, Maleki Zahra, Martin John A, Pantanowitz Liron, Petersen Bret, Storm Andrew C, Levy Michael J, Graham Rondell P

机构信息

Program in Digital Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.

Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.

出版信息

Cancer Cytopathol. 2024 Dec;132(12):779-787. doi: 10.1002/cncy.22898. Epub 2024 Aug 29.

Abstract

BACKGROUND

The authors previously developed an artificial intelligence (AI) to assist cytologists in the evaluation of digital whole-slide images (WSIs) generated from bile duct brushing specimens. The aim of this trial was to assess the efficiency and accuracy of cytologists using a novel application with this AI tool.

METHODS

Consecutive bile duct brushing WSIs from indeterminate strictures were obtained. A multidisciplinary panel reviewed all relevant information and provided a central interpretation for each WSI as being "positive," "negative," or "indeterminate." The WSIs were then uploaded to the AI application. The AI scored each WSI as positive or negative for malignancy (i.e., computer-aided diagnosis [CADx]). For each WSI, the AI prioritized cytologic tiles by the likelihood that malignant material was present in the tile. Via the AI, blinded cytologists reviewed all WSIs and provided interpretations (i.e., computer-aided detection [CADe]). The diagnostic accuracies of the WSI evaluation via CADx, CADe, and the original clinical cytologic interpretation (official cytologic interpretation [OCI]) were compared.

RESULTS

Of the 84 WSIs, 15 were positive, 42 were negative, and 27 were indeterminate after central review. The WSIs generated on average 141,950 tiles each. Cytologists using the AI evaluated 10.5 tiles per WSI before making an interpretation. Additionally, cytologists required an average of 84.1 s of total WSI evaluation. WSI interpretation accuracies for CADx (0.754; 95% CI, 0.622-0.859), CADe (0.807; 95% CI, 0.750-0.856), and OCI (0.807; 95% CI, 0.671-0.900) were similar.

CONCLUSIONS

This trial demonstrates that an AI application allows cytologists to perform a triaged review of WSIs while maintaining accuracy.

摘要

背景

作者之前开发了一种人工智能(AI),以协助细胞学家评估胆管刷检标本生成的数字全切片图像(WSIs)。本试验的目的是评估细胞学家使用这款带有AI工具的新型应用程序的效率和准确性。

方法

获取连续的来自不确定狭窄的胆管刷检WSIs。一个多学科小组审查了所有相关信息,并对每个WSI给出“阳性”“阴性”或“不确定”的中央解读。然后将WSIs上传到AI应用程序。AI将每个WSI评为恶性或良性(即计算机辅助诊断[CADx])。对于每个WSI,AI根据切片中存在恶性物质的可能性对细胞学切片进行优先级排序。通过AI,不知情的细胞学家审查了所有WSIs并给出解读(即计算机辅助检测[CADe])。比较了通过CADx、CADe和原始临床细胞学解读(官方细胞学解读[OCI])对WSI评估的诊断准确性。

结果

在84个WSIs中,经中央审查后,15个为阳性,42个为阴性,27个为不确定。每个WSIs平均生成141,950个切片。使用AI的细胞学家在给出解读前,每个WSI评估10.5个切片。此外,细胞学家评估每个WSI总共平均需要84.1秒。CADx(0.754;95%CI,0.622 - 0.859)、CADe(0.807;95%CI,0.750 - 0.856)和OCI(0.807;95%CI,0.671 - 0.900)的WSI解读准确性相似。

结论

本试验表明,一种AI应用程序可使细胞学家在保持准确性的同时,对WSIs进行分类审查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验