Structural Biology, Nuvisan ICB GmbH, Muellerstrasse 178, 13353 Berlin, Germany.
Protein Technologies, Nuvisan ICB GmbH, Muellerstrasse 178, 13353 Berlin, Germany.
Acta Crystallogr D Struct Biol. 2024 Sep 1;80(Pt 9):661-674. doi: 10.1107/S2059798324007939. Epub 2024 Aug 29.
A key prerequisite for the successful application of protein crystallography in drug discovery is to establish a robust crystallization system for a new drug-target protein fast enough to deliver crystal structures when the first inhibitors have been identified in the hit-finding campaign or, at the latest, in the subsequent hit-to-lead process. The first crucial step towards generating well folded proteins with a high likelihood of crystallizing is the identification of suitable truncation variants of the target protein. In some cases an optimal length variant alone is not sufficient to support crystallization and additional surface mutations need to be introduced to obtain suitable crystals. In this contribution, four case studies are presented in which rationally designed surface modifications were key to establishing crystallization conditions for the target proteins (the protein kinases Aurora-C, IRAK4 and BUB1, and the KRAS-SOS1 complex). The design process which led to well diffracting crystals is described and the crystal packing is analysed to understand retrospectively how the specific surface mutations promoted successful crystallization. The presented design approaches are routinely used in our team to support the establishment of robust crystallization systems which enable structure-guided inhibitor optimization for hit-to-lead and lead-optimization projects in pharmaceutical research.
蛋白质晶体学在药物发现中成功应用的一个关键前提条件是,为新的药物靶标蛋白建立一个足够强大的结晶系统,以便在发现命中化合物的筛选过程中,或者最迟在随后的命中-先导化合物优化过程中,当首次鉴定出第一个抑制剂时,能够提供晶体结构。生成具有高结晶可能性的折叠良好的蛋白质的第一个关键步骤是鉴定靶蛋白的合适截短变体。在某些情况下,单独的最佳长度变体不足以支持结晶,需要引入额外的表面突变以获得合适的晶体。在本研究中,介绍了四个案例研究,其中合理设计的表面修饰是为靶蛋白(蛋白激酶 Aurora-C、IRAK4 和 BUB1 以及 KRAS-SOS1 复合物)建立结晶条件的关键。描述了导致高分辨率晶体形成的设计过程,并对晶体堆积进行了分析,以便从回顾性角度了解特定的表面突变如何促进成功的结晶。所提出的设计方法在我们的团队中被常规用于支持建立强大的结晶系统,这些系统能够为药物研究中的命中-先导化合物优化和先导化合物优化项目提供结构导向的抑制剂优化。