Suppr超能文献

迈向理性蛋白质结晶:用于设计可结晶蛋白质变体的网络服务器。

Toward rational protein crystallization: A Web server for the design of crystallizable protein variants.

作者信息

Goldschmidt Lukasz, Cooper David R, Derewenda Zygmunt S, Eisenberg David

机构信息

Howard Hughes Medical Institute, University of California, Los Angeles-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570, USA.

出版信息

Protein Sci. 2007 Aug;16(8):1569-76. doi: 10.1110/ps.072914007.

Abstract

Growing well-diffracting crystals constitutes a serious bottleneck in structural biology. A recently proposed crystallization methodology for "stubborn crystallizers" is to engineer surface sequence variants designed to form intermolecular contacts that could support a crystal lattice. This approach relies on the concept of surface entropy reduction (SER), i.e., the replacement of clusters of flexible, solvent-exposed residues with residues with lower conformational entropy. This strategy minimizes the loss of conformational entropy upon crystallization and renders crystallization thermodynamically favorable. The method has been successfully used to crystallize more than 15 novel proteins, all stubborn crystallizers. But the choice of suitable sites for mutagenesis is not trivial. Herein, we announce a Web server, the surface entropy reduction prediction server (SERp server), designed to identify mutations that may facilitate crystallization. Suggested mutations are predicted based on an algorithm incorporating a conformational entropy profile, a secondary structure prediction, and sequence conservation. Minor considerations include the nature of flanking residues and gaps between mutation candidates. While designed to be used with default values, the server has many user-controlled parameters allowing for considerable flexibility. Within, we discuss (1) the methodology of the server, (2) how to interpret the results, and (3) factors that must be considered when selecting mutations. We also attempt to benchmark the server by comparing the server's predictions with successful SER structures. In most cases, the structure yielding mutations were easily identified by the SERp server. The server can be accessed at http://www.doe-mbi.ucla.edu/Services/SER.

摘要

生长出衍射良好的晶体是结构生物学中的一个严重瓶颈。最近针对“顽固结晶蛋白”提出的一种结晶方法是设计表面序列变体,使其形成能够支撑晶格的分子间接触。这种方法依赖于表面熵降低(SER)的概念,即用构象熵较低的残基取代柔性的、暴露于溶剂中的残基簇。该策略可使结晶过程中构象熵的损失最小化,并使结晶在热力学上变得有利。该方法已成功用于使超过15种新型蛋白质结晶,这些都是顽固结晶蛋白。但是选择合适的诱变位点并非易事。在此,我们宣布推出一个网络服务器——表面熵降低预测服务器(SERp服务器),旨在识别可能促进结晶的突变。基于一种结合构象熵图谱、二级结构预测和序列保守性的算法来预测建议的突变。次要考虑因素包括侧翼残基的性质以及突变候选位点之间的间隔。虽然该服务器设计为使用默认值,但它有许多用户可控制的参数,具有相当大的灵活性。在此,我们讨论(1)服务器的方法,(2)如何解释结果,以及(3)选择突变时必须考虑的因素。我们还试图通过将服务器的预测与成功的SER结构进行比较来对服务器进行基准测试。在大多数情况下,产生突变的结构很容易被SERp服务器识别。可通过http://www.doe-mbi.ucla.edu/Services/SER访问该服务器。

相似文献

2
Protein crystallization by surface entropy reduction: optimization of the SER strategy.通过表面熵降低进行蛋白质结晶:表面熵降低策略的优化
Acta Crystallogr D Biol Crystallogr. 2007 May;63(Pt 5):636-45. doi: 10.1107/S0907444907010931. Epub 2007 Apr 21.
4
Entropy and surface engineering in protein crystallization.蛋白质结晶中的熵与表面工程
Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):116-24. doi: 10.1107/S0907444905035237. Epub 2005 Dec 14.
5
CEP: a conformational epitope prediction server.CEP:一个构象表位预测服务器。
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W168-71. doi: 10.1093/nar/gki460.
8
XtalPred: a web server for prediction of protein crystallizability.XtalPred:一个用于预测蛋白质结晶性的网络服务器。
Bioinformatics. 2007 Dec 15;23(24):3403-5. doi: 10.1093/bioinformatics/btm477. Epub 2007 Oct 5.

引用本文的文献

本文引用的文献

8
Structure and activity of the axon guidance protein MICAL.轴突导向蛋白MICAL的结构与活性
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16830-5. doi: 10.1073/pnas.0504838102. Epub 2005 Nov 7.
10
Surface-entropy reduction used in the crystallization of human choline acetyltransferase.表面熵降低在人胆碱乙酰转移酶结晶中的应用。
Acta Crystallogr D Biol Crystallogr. 2005 Sep;61(Pt 9):1306-10. doi: 10.1107/S0907444905018822. Epub 2005 Aug 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验