Addhya Anchita, Tyne Victor, Guo Xinghan, Hammock Ian N, Li Zixi, Leung Melody, DeVault Clayton T, Awschalom David D, Delegan Nazar, Heremans F Joseph, High Alexander A
Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
Department of Physics, University of Chicago, Chicago, Illinois 60637, United States.
Nano Lett. 2024 Sep 11;24(36):11224-11231. doi: 10.1021/acs.nanolett.4c02639. Epub 2024 Aug 29.
Color centers in diamond have widespread utility in quantum technologies, but their creation process remains stochastic in nature. Deterministic creation of color centers in device-ready diamond platforms can improve the yield, scalability, and integration. Recent work using pulsed laser excitation has shown impressive progress in deterministically creating defects in bulk diamond. Here, we extend this laser-writing process into nanophotonic devices etched into diamond membranes, including nanopillars and photonic resonators with writing and subsequent readout occurring in situ at cryogenic temperatures. We demonstrate the optically driven creation of carbon vacancy (GR1) and nitrogen vacancy (NV) centers in diamond nanopillars and observe enhanced photoluminescence collection from them. We also fabricate bullseye resonators and leverage their cavity modes to locally amplify the laser-writing field, yielding defect creation with picojoule write-pulse energies 100 times lower than those typically used in bulk diamond demonstrations.
金刚石中的色心在量子技术中具有广泛的应用,但它们的产生过程本质上仍然是随机的。在可用于器件的金刚石平台中确定性地产生色心可以提高产量、可扩展性和集成度。最近使用脉冲激光激发的工作在确定性地在块状金刚石中产生缺陷方面取得了令人瞩目的进展。在这里,我们将这种激光写入过程扩展到蚀刻在金刚石膜中的纳米光子器件中,包括纳米柱和光子谐振器,在低温下原位进行写入和随后的读出。我们展示了在金刚石纳米柱中光驱动产生碳空位(GR1)和氮空位(NV)中心,并观察到来自它们的增强光致发光收集。我们还制造了靶心谐振器,并利用它们的腔模来局部放大激光写入场,以皮焦耳的写入脉冲能量产生缺陷,这比通常在块状金刚石演示中使用的能量低100倍。