Castelletto Stefania, Maksimovic Jovan, Katkus Tomas, Ohshima Takeshi, Johnson Brett C, Juodkazis Saulius
School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia.
Nanomaterials (Basel). 2020 Dec 31;11(1):72. doi: 10.3390/nano11010072.
Color centers in silicon carbide are relevant for applications in quantum technologies as they can produce single photon sources or can be used as spin qubits and in quantum sensing applications. Here, we have applied femtosecond laser writing in silicon carbide and gallium nitride to generate vacancy-related color centers, giving rise to photoluminescence from the visible to the infrared. Using a 515 nm wavelength 230 fs pulsed laser, we produce large arrays of silicon vacancy defects in silicon carbide with a high localization within the confocal diffraction limit of 500 nm and with minimal material damage. The number of color centers formed exhibited power-law scaling with the laser fabrication energy indicating that the color centers are created by photoinduced ionization. This work highlights the simplicity and flexibility of laser fabrication of color center arrays in relevant materials for quantum applications.
碳化硅中的色心与量子技术应用相关,因为它们可以产生单光子源,或者用作自旋量子比特以及用于量子传感应用。在此,我们已将飞秒激光写入技术应用于碳化硅和氮化镓中,以生成与空位相关的色心,从而产生从可见光到红外光的光致发光。使用波长为515 nm的230 fs脉冲激光,我们在碳化硅中产生了大量的硅空位缺陷阵列,这些缺陷在500 nm的共焦衍射极限内具有高度的局域性,并且材料损伤最小。形成的色心数量与激光制备能量呈现幂律缩放关系,这表明色心是由光致电离产生的。这项工作突出了在量子应用相关材料中激光制备色心阵列的简单性和灵活性。